Divide and Conquer: Efficient large-scale structure from motion using graph partitioning

Brojeshwar Bhowmick¹, Suvam Patra¹, Avishek Chatterjee², Venu Madhav Govindu², Subhashis Banerjee¹

¹Indian Institute of Technology Delhi, New Delhi, India

²Indian Institute of Science, Bengaluru, India

brojeshwar|suvam|suban@cse.iitd.ac.in, avishek|venu@ee.iisc.ernet.in

Divide and Conquer: Efficient large-scale structure from motion using graph partitioning

Brojeshwar Bhowmick¹, Suvam Patra¹, Avishek Chatterjee², Venu Madhav Govindu², Subhashis Banerjee¹

¹Indian Institute of Technology Delhi, New Delhi, India

Colosseum

²Indian Institute of Science, Bengaluru, India

Introduction Experimental Results Image: Contemporary large scale SfM methods use bundle adjustment. Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bundle adjustment. Image: Reconstruction fails when: Image: Contemporary large scale SfM methods use bu

Number of 3D to 2D correspondences are insufficient.

(a) Reconstruction failure by VSFM.

(b) Successful reconstruction by our method.

- Bundle adjustment is:
 - Real Computationally demanding.
 - Time consuming due to large number of images.

Our Contribution

- A Partition a large collection of images into disjoint connected components.
- Each component can be independently and reliably reconstructed.
- A Identify connecting images between components to register the independent reconstructions.
- A method to register independent reconstructions using pairwise epipolar geometry.
- 🖾 One order of magnitude speed improvement compared to state-of-the-art methods.

Dataset	No. of	No. of	No. of
	images	components	images
			recons
Rome	13783	24	10534
Hampi	3017	7	2584
St Peter's Basilica	1275	5	1236

1164

3

🖉 Hampi dataset

and our method with epipolar

robustness (green).

1032

(c) Overlaid on Google map.

and our method (green).

🖉 Central Rome dataset

Dataset Decomposition

Image acquisition from a site in an organised manner makes the problem of decomposition into smaller sets trivial.

- Images downloaded from the internet are referred to as unorganised images.
- 🖉 Use multi-way normalised cut [3] to partition the match graph into individual components.

- In The images that belong to a cut are used as connecting images.
- Each individual component is reconstructed in parallel using a sequential bundler [4].

Registration of Independent Component Reconstructions

- Let A and B be two independently reconstructed components, and $k \in \mathbb{C}_{AB}$ be a connecting camera between them.
- \measuredangle Let R_{Ak} and T_{Ak} denote the rotation and translation of camera k in the frame of reference of A
- \measuredangle For image $i \in A$, let R_{Ai} and T_{Ai} be the rotation of i in the frame of reference of A.

Scale Estimation between a Pair of Reconstructions:

 $\mathbb{R} R_{ik}$ and t_{ik} are estimated from the epipolar relationship between i and k.

$$R_{ik} = R_{Ak} R_{Ai}^{T} \Rightarrow R_{Ak} = R_{ik} R_{Ak}$$

🖉 Colosseum dataset

Time Comparison

Detect

Translation directions are related as described in [1]

$$t_{ik} \propto T_{Ak} - R_{ik} T_{Ai} \Rightarrow [t_{ik}]_{\times} (T_{Ak} - R_{ik} T_{Ai}) = 0$$

IST Compute averaged rotation [2] and translation as:

$$\widehat{R}_{Ak} = \underset{i \in A}{\operatorname{mean}} \left(R_{ik} R_{Ai} \right)$$

$$\widehat{T}_{Ak} = \underset{T_{Ak}}{\operatorname{argmin}} \sum_{i \in A} \frac{\left\| [t_{ik}]_{\times} \left(T_{Ak} - R_{ik} T_{Ai} \right) \right\|^2}{\left\| T_{Ak} - R_{ik} T_{Ai} \right\|^2}$$

Scale is calculated as:

$$\widehat{s}_{AB} = \underset{k_1,k_2 \in \mathbb{C}_{AB}}{\text{median}} \frac{\left\| -\widehat{R}_{Bk_1}\widehat{T}_{Bk_1} + \widehat{R}_{Bk_2}\widehat{T}_{Bk_2} \right\|}{\left\| -\widehat{R}_{Ak_1}\widehat{T}_{Ak_1} + \widehat{R}_{Ak_2}\widehat{T}_{Ak_2} \right\|}$$

Relative Rotation and Translation Estimation between Two Reconstructions:

Using single epipolar relationship, rotation and translation between two reconstructions can be found as:

$$R_{AB} = R_B R_A^T = \widehat{R}_{Bk}^T \widehat{R}_{Ak}$$
$$T_{AB} = T_B - R_B R_A^T T_A = \widehat{s}_{AB} \widehat{R}_{Bk}^T \widehat{T}_{Ak} - \widehat{R}_{Bk}^T \widehat{T}_{Bk}$$

Reference As the above relations holds for all k,

$$\widehat{R}_{AB} = \underset{k \in \mathbb{C}_{AB}}{\operatorname{mean}} \left(\widehat{R}_{Bk}^{T} \widehat{R}_{Ak} \right)$$
$$\widehat{T}_{AB} = \underset{T}{\operatorname{argmin}} \sum_{k \in \mathbb{C}_{AB}} \left\| T - \left(\widehat{s}_{AB} \widehat{R}_{Bk}^{T} \widehat{T}_{Ak} - \widehat{R}_{Bk}^{T} \widehat{T}_{Bk} \right) \right\|_{1}$$

Dataset	Match graph	1 an wise	Reconstruction	Total time	1 an wise	Reconstruction	Total
	creation using	matching	and	by us	matching	by VSFM	time
	vocabulary tree	(mins)	registration	(mins)	by VSFM	(mins)	by VSFM
	(mins)		(mins)		(mins)		(mins)
Rome	768	502	27	1297	N/A	N/A	N/A
Hampi	481	424	8	913	9522	59	9581
St Peter's Basilica	98	22	4	124	1385	10	1395
Colosseum	83	24	3	110	1394	9	1403

Comparison of our Method against VisualSFM for Hampi Dataset

Error entity	Error unit	Mean error	Median error	RMS error
Camera rotation	Degrees	1.93	1.57	2.66
Camera translation	Ratio of graph diameter	0.012	0.0091	0.041

References

[1] V. M. Govindu.

Combining two-view constraints for motion estimation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 218–225, 2001

- [2] V. M. Govindu.
 Lie-algebraic averaging for globally consistent motion estimation.
 In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2004.
- J. Shi and J. Malik.
 Normalized cuts and image segmentation.
 IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.
- [4] C. Wu. Towards linear-time incremental structure from motion. In Proceedings of the International Conference on 3D Vision, 3DV '13, pages 127–134, 2013.

brojeshwar|suvam|suban@cse.iitd.ac.in, avishek|venu@ee.iisc.ernet.in