
3 January, 2002 1

06-06798 Distributed Systems

Lecture 2:
Architectural Models

3 January, 2002 2

Overview

• System architectures

• Software layers

• Architectural models
– client-server, peer processes,…

– mobile code, agents,...

• Design requirements
– user expectations of the system

3 January, 2002 3

Example: Paperless Office

• Requirements
– input and storage of scanned documents

– viewing/printing of documents on demand

– networking for resource sharing and communications

– accounting and data analysis

• Required properties
– no loss/corruption/unauthorised access of data

– fast response

– should grow as the business expands

3 January, 2002 4

Customer services

Mainframe

DataBase
Server

Printer Service

Postal services

 Scanner

London

Birmingham

Distributed Design

3 January, 2002 5

workstations

Two Tier Architecture

or presentation ÅÆ Data processing
(remote procedure call)

Presentation + processing ÅÆ Data (remote data access)

Network computer or
PCs with terminal
emulation

Presentation (to clients)
+ processing (transactions, applications)
+ data (management & access)

Client-server
“fat client”

or “fat server”

Client Server Systems
One Tier Architecture

3 January, 2002 6

Client Server ctd
Three Tier Architecture

presentation data

remote data access,
procedure call

processing

clients shared application
services

shared data services

remote data access or
transaction processing

Two tier is satisfactory for simple client-
server applications, but for more
demanding transaction processing
applications*....

3 January, 2002 7

Software Layers

applications

Open (distributed) services

Computer and network hardware

Operating system

 Middleware

conventional
and

distributed
applications

responsible for basic local
resource management

(memory allocation/protection,
process creation and

scheduling, local interprocess
communication and peripheral

devices handling)

extended services
available to those of

the distributed system

language and run-time

support for program

interaction

Platform

3 January, 2002 8

Software layers

• Service layers

• Higher-level access services at lower layers

• Services can be located on different
computers

• Process types:
– server processes

– client processes

– peer processes

3 January, 2002 9

Important layers

• Platform
– lowest-level hardware+software

– common programming interface, yet

– different implementations of operating system
facilities for co-ordination & communication

• Middleware
– programming support for distributed computing

3 January, 2002 10

Middleware provides...
• support for distributed processes/objects:

– suitable for applications programming

– communication via
• remote method invocation (Java RMI), or

• remote procedure call (Sun RPC)

• services infrastructure for application
programs
– naming, security, transactions, event

notification, ...

– products: CORBA, DCOM

3 January, 2002 11

The layered view...

• though appropriate for simple types of
resource data sharing:
– e.g. databases of names/addresses/exam grades

• too restrictive for more complex functions?
– reliability, security, fault-tolerance, etc, need

access to application’s data

– see end-to-end argument [Saltzer, Reed &
Clarke]

3 January, 2002 12

Architectural models

• Define
– software components (processes, objects)

– ways in which components interact

– mapping of components onto the underlying
network

• Why needed?
– to handle varying environments and usage

– to guarantee performance

3 January, 2002 13

Main types of models
• Client-server

– first and most commonly used

• Multiple servers
– to improve performance and reliability

– e.g. search engines (1000’s of computers)

• Proxy servers
– to reduce load on network, provide access through

firewall

• Peer processes
– when faster interactive response needed

3 January, 2002 14

 Client server

Server1

Client

Client

invocation

result

Server2invocation

result

Process:
Key:

Computer:

 Server1 acts as client for Server2

3 January, 2002 15

Multiple servers

Server

Server

Server

Service

Client

Client

Servers may interact

3 January, 2002 16

Proxy servers

Client

Proxy

Web

server

Web

server

server
Client

intranet firewall outside world

3 January, 2002 17

Peer processes

Co-ordination

Application

code

Co-ordination

Application

code

Co-ordination

Application

code

‘White-board’
(event notification)

3 January, 2002 18

Client server and mobility

• Mobile code
– downloaded from server, runs on locally

– e.g. web applets

• Mobile agent (code + data)
– travels from computer to another

– collects information, returning to origin

Beware! Security risks

3 January, 2002 19

Web applets
Client requests results, applet code is downloaded:

Web
server

Client
Web
serverApplet

Applet code

Client

Client interacts with the applet:

3 January, 2002 20

Design Requirements for DSs

Judging how good the architecture is...

• Performance
– how fast will it respond?

• Quality of Service
– are video frames and sound synchronised?

• Dependability
– does it work correctly?

3 January, 2002 21

Performance

• Responsiveness
– fast interactive response delayed by remote

requests

– use of caching, replication

• Throughput
– dependent on speed of server and data transfer

• Load balancing
– use of applets, multiple servers

3 January, 2002 22

Quality of Service (QoS)

Non-functional properties experienced by users:

• Deadline properties
– hard deadlines (must be met within T time units)

– soft deadlines (`there is a 90% chance that the video
frame will be delivered within T time units)

• multimedia traffic, video/sound synchronisation

• depend on availability of sufficient resources

• Adaptability
– ability to adapt to changing system configuration

3 January, 2002 23

Dependability

• Correctness
– correct behaviour wrt specification

– e.g. use of verification

• Fault-tolerance
– ability to tolerate/recover from faults

– e.g. use of redundancy

• Security
– ability to withstand malicious attack

– e.g. use of encryption, etc

3 January, 2002 24

Summary
• Choose between one tier, two tier, …

– simple versus complex transaction processing

• Client-server architecture most common
– used for WWW, email, ftp, Internet services, etc

• but can lead to bottlenecks
– multiple servers for fast response (e.g. Google search

engine based on 6,000 Linux PCs)

– proxy servers used to limit load (e.g. through firewall)

• Expected to meet requirements of Performance,
QoS and Dependability

