
15 January, 2002 1

06-06798 Distributed Systems

Lecture 5:
Object Interaction: RMI and RPC
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Overview
• Distributed applications programming

– distributed objects model

– RMI, invocation semantics

– RPC

– events and notifications

• Products
– Java RMI, CORBA, DCOM

– Sun RPC

– Jini
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Why Middleware?

• Location transparency
– client/server need not know their location

• Sits on top of OS, independent of:
– communication protocols:

use abstract request-reply protocols over UDP, TCP

– computer hardware:
use external data representation e.g. CORBA CDR

– operating system:
use e.g. socket abstraction available in most systems

– programming language:
e.g. CORBA supports Java, C++
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Middleware layer

Applications
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Operating System

RMI, RPC and events
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Objects

• Objects = data + methods
– logical and physical nearness

– first class citizens, can be passed as arguments

• Interact via interfaces:
– define types of arguments and exceptions of methods
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The object model
• Programs logically partitioned into objects

– distributing objects natural and easy

• Interfaces
– the only means to access data, make them remote?

• Actions
– via method invocation

– interaction, chains of invocations

– may lead to exceptions, part of interface

• Garbage collection
– reduced effort, error-free (Java, not C++)
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The distributed object model

• Objects distributed (client-server models)

• Extend with
– Remote object reference

– Remote interfaces

– Remote Method Invocation (RMI)
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Advantages of distributed objects

• Data encapsulation gives better protection
– concurrent processes, interference

• Method invocations
– can be remote or local

• Objects
– can act as clients, servers, etc

– can be replicated for fault-tolerance and performance

– can migrate, be cached for faster access
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Remote object reference
• Object references

– used to access objects which live in processes

– can be passed as arguments, stored in variables,...

• Remote object references
– object identifiers in a distributed system

– must be unique in space and time

– error returned if accessing a deleted object

– can allow relocation (see CORBA case study)
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Remote object reference
• Constructing unique remote object reference

– IP address, port, interface name

– time of creation, local object number (new for each
object)

• Use the same as for local object references

• If used as addresses
– cannot support relocation (alternative in CORBA)

Internet address port number time object numberinterface of 
remote object

32 bits 32 bits 32 bits 32 bits
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Remote interfaces

• Specify externally accessed
– variables and procedures

– no direct references to variables (no global memory)

– local interface separate

• Parameters
– input, output or both,

– instead of call by value, call by reference

• No pointers

• No constructors
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Remote object and its interfaces

• CORBA: Interface Definition Language (IDL)

• Java RMI: as other interfaces, keyword Remote
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Handling remote objects

• Exceptions
– raised in remote invocation

– clients need to handle exceptions

– timeouts in case server crashed or too busy

• Garbage collection
– distributed garbage collection may be necessary

– combined local and distributed collector

– cf Java reference counting
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RMI issues

• Local invocations
– executed exactly once

• Remote invocations
– via Request-Reply (see DoOperation)

– may suffer from communication failures!
• retransmission of request/reply

• message duplication, duplication filtering

– no unique semantics…
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Invocation semantics summary

Fault tolerance measures Invocation 
semantics

Retransmit request 
message

Duplicate 
filtering

Re-execute procedure 
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

Re-executing a method sometimes dangerous...Re-executing a method sometimes dangerous...
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Maybe invocation
• Remote method

– may execute or not at all, invoker cannot tell

– useful only if occasional failures

• Invocation message lost...
– method not executed

• Result not received...
– was method executed or not?

• Server crash...
– before or after method executed?

– if timeout, result could be received after timeout...
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At-least-once invocation
• Remote method

– invoker receives result (executed exactly) or exception
(no result, executed once or not at all)

– retransmission of request messages

• Invocation message retransmitted...
– method may be executed more than once

– arbitrary failure (wrong result possible)

– method must be idempotent (repeated execution has the
same effect as a single execution)

• Server crash...
– dealt with by timeouts, exceptions
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At-most-once invocation

• Remote method
– invoker receives result (executed once) or exception (no

result)

– retransmission of reply & request messages

– duplicate filtering

• Best fault-tolerance...
– arbitrary failures prevented if method called at most once

• Used by CORBA and Java RMI
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Transparency of RMI
• Should remote method invocation be same as local?

– same syntax, see Java RMI (keyword Remote)

– need to hide
• data marshalling

• IPC calls

• locating/contacting remote objects

• Problems
– different RMI semantics? susceptibility to failures?

– protection against interference in concurrent scenario?

• Approaches (Java RMI)
– transparent, but express differences in interfaces

– provide recovery features
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Implementation of RMI

object A object Bskeleton
Request

proxy  for B

Reply

CommunicationRemote Remote referenceCommunication

 module modulereference module  module

for B’s class
& dispatcher

remote
client  server

Object A invokes a method in a remote object B:Object A invokes a method in a remote object B:
communication module, remote reference module, RMI software.communication module, remote reference module, RMI software.
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Communication modules

• Reside in client and server

• Carry out Request-Reply jointly
– use unique message ids (new integer for each message)

– implement given RMI semantics

• Server’s communication module
– selects dispatcher within RMI software

– converts remote object reference to local
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Remote reference module

• Creates remote object references and proxies

• Translates remote to local references (object table):
– correspondence between remote and local object

references (proxies )

• Directs requests to proxy (if exists)

• Called by RMI software
– when marshalling/unmarshalling
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RMI software architecture
• Proxy

– behaves like local object to client

– forwards requests to remote object

• Dispatcher
– receives request

– selects method and passes on request to skeleton

• Skeleton
– implements methods in remote interface

• unmarshals data, invokes remote object

• waits for result, marshals it and returns reply
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Binding and activation
• The binder

– mapping from textual names to remote references

– used by clients as a look-up service (cf Java RMIregistry)

• Activation
– objects active (available for running) and passive

(=implementation of methods + marshalled state)

– activation = create new instance of class + initialise from
stored state

• Activator
– records location of passive and active objects

– starts server processes and activates objects within them
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Object location issues
• Persistent object stores

– stored on disk, state in marshalled form

– readily available

– cf Persistent Java

• Object migration
– need to use remote object reference and address

• Location service
– assists in locating objects

– maps remote object references to probable locations
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Remote Procedure Call (RPC)

• RPC
– historically first, now little used

– over Request-Reply protocol

– usually at-least-once or at-most-once semantics

– can be seen as a restricted form of RMI

– cf Sun RPC

• RPC software architecture
– similar to RMI (communication, dispatcher and stub in

place of proxy/skeleton)
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RPC client and server

client 

Request

Reply

CommunicationCommunication
 module module dispatcher

service 

client stub

 

server stub
procedure procedure

client  process server  process 

procedureprogram 

Implemented over Request-Reply protocol.Implemented over Request-Reply protocol.
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Event notification
• Distributed event-based systems (cf Jini)

– object of interest, several interested parties

– for heterogeneous systems

– asynchronous model

• Based on Publish-Subscribe paradigm
– publish type of event

– subscribe to event notification

– various delivery semantics (multicast, etc)

• Applications
– financial information systems

– real-time systems (hospital monitoring, powerstation)
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Architecture for event notification

subscriberobserverobject of interest

Event  service

object of interest

object of interest observer

subscriber

subscriber

3.

1.

2. notification

notification

notification

notification
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Summary
• Distributed object model

– capabilities for handling remote objects (remote
references, etc)

– RMI: maybe, at-least-once, at-most-once semantics

– RMI implementation, software architecture

• Other distributed programming paradigms
– RPC, restricted form of RMI, less often used

– event notification (for heterogeneous, asynchronous
systems)


