
15 January, 2002 1

06-06798 Distributed Systems

Lecture 5:
Object Interaction: RMI and RPC

15 January, 2002 2

Overview
• Distributed applications programming

– distributed objects model

– RMI, invocation semantics

– RPC

– events and notifications

• Products
– Java RMI, CORBA, DCOM

– Sun RPC

– Jini

15 January, 2002 3

Why Middleware?

• Location transparency
– client/server need not know their location

• Sits on top of OS, independent of:
– communication protocols:

use abstract request-reply protocols over UDP, TCP

– computer hardware:
use external data representation e.g. CORBA CDR

– operating system:
use e.g. socket abstraction available in most systems

– programming language:
e.g. CORBA supports Java, C++

15 January, 2002 4

Middleware layer

Applications

Middleware
layers

Request -reply protocol

External data representation

Operating System

RMI, RPC and events

15 January, 2002 5

Objects

• Objects = data + methods
– logical and physical nearness

– first class citizens, can be passed as arguments

• Interact via interfaces:
– define types of arguments and exceptions of methods

interface

m1
m2
m3

data

implementation

object

of methods

data

implementation

object

of methods

m4

m5

15 January, 2002 6

The object model
• Programs logically partitioned into objects

– distributing objects natural and easy

• Interfaces
– the only means to access data, make them remote?

• Actions
– via method invocation

– interaction, chains of invocations

– may lead to exceptions, part of interface

• Garbage collection
– reduced effort, error-free (Java, not C++)

15 January, 2002 7

The distributed object model

• Objects distributed (client-server models)

• Extend with
– Remote object reference

– Remote interfaces

– Remote Method Invocation (RMI)

invocation invocation
remote

invocation
remote

local
local

local

invocation

invocation
A B

C

D

E

F

15 January, 2002 8

Advantages of distributed objects

• Data encapsulation gives better protection
– concurrent processes, interference

• Method invocations
– can be remote or local

• Objects
– can act as clients, servers, etc

– can be replicated for fault-tolerance and performance

– can migrate, be cached for faster access

15 January, 2002 9

Remote object reference
• Object references

– used to access objects which live in processes

– can be passed as arguments, stored in variables,...

• Remote object references
– object identifiers in a distributed system

– must be unique in space and time

– error returned if accessing a deleted object

– can allow relocation (see CORBA case study)

15 January, 2002 10

Remote object reference
• Constructing unique remote object reference

– IP address, port, interface name

– time of creation, local object number (new for each
object)

• Use the same as for local object references

• If used as addresses
– cannot support relocation (alternative in CORBA)

Internet address port number time object numberinterface of
remote object

32 bits 32 bits 32 bits 32 bits

15 January, 2002 11

Remote interfaces

• Specify externally accessed
– variables and procedures

– no direct references to variables (no global memory)

– local interface separate

• Parameters
– input, output or both,

– instead of call by value, call by reference

• No pointers

• No constructors

15 January, 2002 12

Remote object and its interfaces

• CORBA: Interface Definition Language (IDL)

• Java RMI: as other interfaces, keyword Remote

interfaceremote

m1
m2
m3

m4
m5
m6

Data

implementation

remote object

{ of methods

local

interface

15 January, 2002 13

Handling remote objects

• Exceptions
– raised in remote invocation

– clients need to handle exceptions

– timeouts in case server crashed or too busy

• Garbage collection
– distributed garbage collection may be necessary

– combined local and distributed collector

– cf Java reference counting

15 January, 2002 14

RMI issues

• Local invocations
– executed exactly once

• Remote invocations
– via Request-Reply (see DoOperation)

– may suffer from communication failures!
• retransmission of request/reply

• message duplication, duplication filtering

– no unique semantics…

15 January, 2002 15

Invocation semantics summary

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

Re-executing a method sometimes dangerous...Re-executing a method sometimes dangerous...

15 January, 2002 16

Maybe invocation
• Remote method

– may execute or not at all, invoker cannot tell

– useful only if occasional failures

• Invocation message lost...
– method not executed

• Result not received...
– was method executed or not?

• Server crash...
– before or after method executed?

– if timeout, result could be received after timeout...

15 January, 2002 17

At-least-once invocation
• Remote method

– invoker receives result (executed exactly) or exception
(no result, executed once or not at all)

– retransmission of request messages

• Invocation message retransmitted...
– method may be executed more than once

– arbitrary failure (wrong result possible)

– method must be idempotent (repeated execution has the
same effect as a single execution)

• Server crash...
– dealt with by timeouts, exceptions

15 January, 2002 18

At-most-once invocation

• Remote method
– invoker receives result (executed once) or exception (no

result)

– retransmission of reply & request messages

– duplicate filtering

• Best fault-tolerance...
– arbitrary failures prevented if method called at most once

• Used by CORBA and Java RMI

15 January, 2002 19

Transparency of RMI
• Should remote method invocation be same as local?

– same syntax, see Java RMI (keyword Remote)

– need to hide
• data marshalling

• IPC calls

• locating/contacting remote objects

• Problems
– different RMI semantics? susceptibility to failures?

– protection against interference in concurrent scenario?

• Approaches (Java RMI)
– transparent, but express differences in interfaces

– provide recovery features

15 January, 2002 20

Implementation of RMI

object A object Bskeleton
Request

proxy for B

Reply

CommunicationRemote Remote referenceCommunication

 module modulereference module module

for B’s class
& dispatcher

remote
client server

Object A invokes a method in a remote object B:Object A invokes a method in a remote object B:
communication module, remote reference module, RMI software.communication module, remote reference module, RMI software.

15 January, 2002 21

Communication modules

• Reside in client and server

• Carry out Request-Reply jointly
– use unique message ids (new integer for each message)

– implement given RMI semantics

• Server’s communication module
– selects dispatcher within RMI software

– converts remote object reference to local

15 January, 2002 22

Remote reference module

• Creates remote object references and proxies

• Translates remote to local references (object table):
– correspondence between remote and local object

references (proxies)

• Directs requests to proxy (if exists)

• Called by RMI software
– when marshalling/unmarshalling

15 January, 2002 23

RMI software architecture
• Proxy

– behaves like local object to client

– forwards requests to remote object

• Dispatcher
– receives request

– selects method and passes on request to skeleton

• Skeleton
– implements methods in remote interface

• unmarshals data, invokes remote object

• waits for result, marshals it and returns reply

15 January, 2002 24

Binding and activation
• The binder

– mapping from textual names to remote references

– used by clients as a look-up service (cf Java RMIregistry)

• Activation
– objects active (available for running) and passive

(=implementation of methods + marshalled state)

– activation = create new instance of class + initialise from
stored state

• Activator
– records location of passive and active objects

– starts server processes and activates objects within them

15 January, 2002 25

Object location issues
• Persistent object stores

– stored on disk, state in marshalled form

– readily available

– cf Persistent Java

• Object migration
– need to use remote object reference and address

• Location service
– assists in locating objects

– maps remote object references to probable locations

15 January, 2002 26

Remote Procedure Call (RPC)

• RPC
– historically first, now little used

– over Request-Reply protocol

– usually at-least-once or at-most-once semantics

– can be seen as a restricted form of RMI

– cf Sun RPC

• RPC software architecture
– similar to RMI (communication, dispatcher and stub in

place of proxy/skeleton)

15 January, 2002 27

RPC client and server

client

Request

Reply

CommunicationCommunication
 module module dispatcher

service

client stub

server stub
procedure procedure

client process server process

procedureprogram

Implemented over Request-Reply protocol.Implemented over Request-Reply protocol.

15 January, 2002 28

Event notification
• Distributed event-based systems (cf Jini)

– object of interest, several interested parties

– for heterogeneous systems

– asynchronous model

• Based on Publish-Subscribe paradigm
– publish type of event

– subscribe to event notification

– various delivery semantics (multicast, etc)

• Applications
– financial information systems

– real-time systems (hospital monitoring, powerstation)

15 January, 2002 29

Architecture for event notification

subscriberobserverobject of interest

Event service

object of interest

object of interest observer

subscriber

subscriber

3.

1.

2. notification

notification

notification

notification

15 January, 2002 30

Summary
• Distributed object model

– capabilities for handling remote objects (remote
references, etc)

– RMI: maybe, at-least-once, at-most-once semantics

– RMI implementation, software architecture

• Other distributed programming paradigms
– RPC, restricted form of RMI, less often used

– event notification (for heterogeneous, asynchronous
systems)

