Object Interaction: RMI and RPC

Overview

e Distributed applications programming
— distributed objects model
— RMI, invocation semantics
— RPC
— events and notifications

 Products
— Java RMI, CORBA, DCOM
— Sun RPC
— Jini

15 January, 2002

Why Middleware?

Location transparency
— client/server need not know their location

Sits on top of OShdependenof:

— communication protocals
use abstract request-reply protocols over UDP, TCP

— computer hardware

use external data representation e.g. CORBA CDR
— operating system

use e.g. socket abstraction available in most systems
— programming language

e.g. CORBA supports Java, C++

15 January, 2002 3

Middleware layer

Applications

RMI, RPC and events

Request -reply protocol Middleware

_ layers
External data representation

Operating System

15 January, 2002 4

Objects

object object
f N f N
data _ data
interface

. . ml m4 . .
implementation_ m2 iy implementation

of methods m3 of methods
\ 4 \ 4

e Objects= data + methods

— logicalandphysicalnearness

— first class citizenscan be passed as arguments
 Interact viainterfaces

— define types ofirgumentandexceptionof methods
15 January, 2002 5

The object model

Programs logicallyartitioned into objects
— distributingobjects natural and easy

Interfaces
— the only means to access data, make tieenote

Actions
— viamethod invocation
— Interaction) chains of invocations
— may lead teexceptionspart of interface

Garbage collection
— reduced effort, error-free (Java, not C++)

15 January, 2002

Thedistributedobject model

remote

e Invocation

/ . E
invocation ~\ocal
Invocation =

remote
Invocation

F

* Objects distributed (client-server models)

o Extend with
— Remoteobject reference

— Remotanterfaces
— RemoteMethod InvocationRMI)

15 January, 2002 7

Advantages of distributed objects

e Data encapsulation gives better protection
— concurrenprocessesnterference

 Method invocations
— can beemoteor local
* Objects
— can act aslients serversetc

— can beeplicatedfor fault-tolerance and performance
— canmigrate becachedor faster access

15 January, 2002 8

Remote object reference

* Object references
— used to access objects which live in processes
— can be passed as arguments, stored in variables,...

 Remoteobject references
— objectidentifiersin a distributed system
— must beuniguein space and time

— error returned if accessing a deleted object
— can allowrelocation(see CORBA case study)

15 January, 2002

Remote object reference

e Constructingunigueremote object reference
— |IP address, port, interface name

— time of creation, local object number (new for each
object)

 Use the same as for local object references

e If used as addresses
— cannotsupport relocation (alternative in CORBA)

32 bits 32 bits 32 bits 32 bits

Internet addresls port number| time object num|>¢ tr%rci?ec%tc)}gct

15 January, 2002 10

Remote Interfaces

Specifyexternallyaccessed

— variablesandprocedures

— nodirect references to variables (no global memory)
— localinterface separate

Parameters
— Input, outputor both,
— Instead otall by valugcall by reference

No pointers
NoO constructors

15 January, 2002 11

Remote object and its interfaces

remote object

Data local
remote interface
interface ma
ml implementation
m
{ m2 6
m?3 | of methods J

« CORBA: Interface Definition Language (IDL)
o Java RMI: as other interfaces, keywétdmote

15 January, 2002 12

Handling remote objects

e EXceptions
— raised In remote invocation
— clients need to handle exceptions
— timeoutsin case server crashed or too busy

e Garbage collection
— distributedgarbage collection may be necessary
— combined local and distributed collector
— cf Java reference counting

15 January, 2002

13

RMI Issues

* Localinvocations
— executeaexactly once

 Remoteinvocations
— via Request-Reply (s&émOperation
— may suffer froncommunication failurds

* retransmission of request/reply
* message duplication, duplication filtering

— nounigue semantics...

15 January, 2002

14

Invocation semantics summary

Fault tolerance measures Invocation
semantics
Retransmit request Duplicate Re-execute procedure
message filtering or retransmit reply
No Not applicable Not applicable Maybe
Yes No Re-executgrocedure At-leastonce
Yes Yes Retransmitreply At-most-once

Re-executing a method sometimes dangerous...

15 January, 2002 15

Maybe invocation

Remote method
— mayexecute onot at all invoker cannot tell
— useful only if occasional failures

Invocation message lost
— method not executed

Result not received
— was method executed or not?

Server crash.
— beforeor aftermethod executed?

— If timeout, result could be receivadtertimeout...

15 January, 2002

16

At-least-once invocation

e Remote method

— Invoker receivesesult(executed exactly) axception
(no result, executed once or not at all)

— retransmission of request messages

e |nvocation message retransmitted
— method may be executed more than once
— arbitraryfailure (wrong result possible)

— method must belempotenirepeated execution has the
same effect as a single execution)

e Server crash
— dealt with by timeouts, exceptions

15 January, 2002 17

At-most-once Invocation

e Remote method

— Invoker receivesesult(executed once) @axception(no
result)

— retransmission of reply & requasiessages
— duplicate filtering

« Best fault-tolerance...
— arbitraryfailures prevented if method called at most once

 Used by CORBA and Java RMI

15 January, 2002 18

Transparency of RMI

 Should remote method invocation be same as local?

— same syntax, see Java RMI (keywBemoteg

— need tdide

« data marshalling
o |PC calls
* locating/contacting remote objects

 Problems
— different RMI semantics? susceptibility to failures?
— protection against interference in concurrent scenario?

e Approaches (Java RMI)

— transparentout express differences in interfaces

— providerecoveryfeatures
15 January, 2002 19

Implementation of RMI

object A proxy for B
9 8 Request >

Reply

remote
object B

O

skeleton
& dispatcher

for B's class

Remote Communication Communication Remote reference
reference module module module module

Object A invokes a method in a remote object B:
communication module, remote reference module, RMI software.

15 January, 2002 20

Communication modules

e Reside In client and server

e Carry out Request-Reply jointly
— useunigue message idrew integer for each message)
— Implement giverRMI semantics

e Server's communication module
— selectsglispatchewithin RMI software
— converts remote object reference to local

15 January, 2002 21

Remote reference module

Creategemoteobject referenceandproxies

Translatesemote to locafeferences (object table):

— correspondence between remote and local object
references (proxies)

Directs requests toroxy (if exists)

Called by RMI software
— whenmarshallingunmarshalling

15 January, 2002 22

RMI software architecture

 Proxy

— behaves like local object to client

— forwards requests to remote object
o Dispatcher

— receivesequest

— selects method and passes on request to skeleton
o Skeleton

— Implements methods in remote interface
e unmarshalslata, invokes remote object
» waits for resultmarshaldt and returnseply

15 January, 2002 23

Binding and activation

e The binder

— mapping from textual names to remote references
— used by clients as a look-up service (cf Java RMIregistry)

e Activation

— objectsactive(avallable for running) andassive
(=implementation of methods + marshalled state)

— activation= create new instance of class + initialise from
stored state

o Activator
— recorddocationof passive and active objects
— startsserver processemdactivatesobjects within them

15 January, 2002 24

ODbject location issues

o Persistent object stores

— stored on disk, state in marshalled form

— readily available

— cf Persistent Java
e Object migration

— need to use remote object refereaceaddress
e Location service

— assists in locating objects
— maps remote object references to probable locations

15 January, 2002 25

Remote Procedure Call (RPC)

e RPC
— historically first, now little used
— overRequest-Replyprotocol
— usuallyat-least-oncer at-most-oncesemantics

— can be seen as a restricted form of RMI
— c¢f Sun RPC

e RPC software architecture

— similar to RMI (communication, dispatcher astdbin
place of proxy/skeleton)

15 January, 2002 26

RPC client and server

client process server process
. Reply :
client stub server stub
rocedure procedure
client service
program Communication Communication procedure
module module dispatcher

Implemented over Request-Reply protocol.

15 January, 2002 27

Event notification

 Distributed event-based systems (cf Jini)
— object of interestseveralnterested parties
— for heterogeneousystems
— asynchronoumodel

 Based orPublish-Subscribparadigm
— publishtype of event
— subscribe t@vent notification
— various delivery semantics (multicast, etc)
* Applications
— financial information systems
— real-time systems (hospital monitoring, powerstation)

15 January, 2002 28

Architecture for event notification
/ Event service\

object of interest subscriber

>
1. notification

object of interest observer subscriber
. g . 4’
2. notification notification
object of interest observer subscriber

3. 8 \ 6 / notification B

15 January, 2002 29

Summary

 Distributed object model

— capabillities fohandling remote objec(semote
references, etc)

— RMI: maybeg at-least-oncgat-most-oncesemantics
— RMI implementation, software architecture

* Other distributed programming paradigms
— RPC, restricted form of RMI, less often used

— event notification (for heterogeneous, asynchronous
systems)

15 January, 2002 30

