
24 January, 2002 1

06-06798 Distributed Systems

Lecture 6:
Operating System Support

24 January, 2002 2

Overview
• Functionality of the Operating System (OS)

– resource management (CPU, memory, …)

• Processes and Threads
– similarities, differences

– multi-threaded servers and clients

• Implementation of...
– communication primitives

– invocation

24 January, 2002 3

Functionality of OS
• Resource sharing

– CPU (single/multiprocessor machines)
• concurrent processes/threads

• communication/synchronisation primitives

• process scheduling

– memory (static/dynamic allocation to programs)
• memory manager

– file storage and devices
• file manager, printer driver, etc

• OS kernel
– implements CPU and memory sharing

– abstracts hardware

24 January, 2002 4

Core OS functionality

Communication

manager

Thread manager Memory manager

Supervisor

Process manager

24 January, 2002 5

Core OS components
• Process manager

– creation and operations on processes (= space+threads)

• Threads manager
– threads creation, synchronisation, scheduling

• Communication manager
– communication between threads (sockets, semaphores)

• Memory manager
– physical (RAM) and virtual (disk) memory

• Supervisor
– hardware abstraction (interrupts, exceptions, caches)

24 January, 2002 6

Why middleware again...
• Network OS (UNIX, Windows NT)

– network transparent access for remote files (NFS)

– no task/process scheduling across different nodes

• Distributed OS
– transparent process scheduling across nodes

– load balancing

– none in use… cost of switching OS too high, load
balancing not always easy to achieve

• Middleware
– built on top of different network OSs

– offers distributed resource sharing

24 January, 2002 7

System layers

Applications, services

Computer &

Platform

Middleware

OS: kernel,
libraries &
servers

network hardware

OS1

Computer &
network hardware

Node 1 Node 2

Processes, threads,
communication, ...

OS2
Processes, threads,
communication, ...

24 January, 2002 8

In this lecture...
which OS mechanisms are needed for middleware

• Concurrent processing of client/server processes
– creation, execution, etc

– data encapsulation

– protection against illegal access

• Implementation of invocation
– communication (parameter passing, local or remote)

– scheduling of invoked operations

24 January, 2002 9

Protection
• Kernel

– complete access privileges to all physical resources

– executes in supervisor mode

• Application programs
– have own address space, separate from kernel and others

– execute in user mode

• Access to resources
– calls to kernel (system call trap), interrupts

– switch to kernel address space

– can be expensive in terms of time

24 January, 2002 10

Processes and threads
• Processes

– historically first abstraction of single thread of activity

– can run concurrently, CPU sharing if single CPU

– need own execution environment
• address space, registers, synchronisation resources (semaphores)

– scheduling requires switching of environment

• Threads (=lightweight processes)
– can share execution environment

• no need for expensive switching

– can be created/destroyed dynamically
• multi-threaded processes

• increased parallelism of operations (=speed up)

24 January, 2002 11

Process/thread address space

• Unit of virtual memory

• One or more regions
– contiguous

– non-overlapping

– gaps for growth

• Allocation
– new region for each thread

– sharing of some regions
• shared libraries, data,...

Stack

Text

Heap

Auxiliary
regions

0

2N

Growth in
opposite
direction

N=32 or 64N=32 or 64

24 January, 2002 12

Process/thread creation

• OS kernel operation (cf UNIX fork, exec)

• Varying policies for
– choice of host

• clusters, single- or multi-processors

• load balancing

– creation of execution environment
• allocate address space

• initialise or copy from parent?

24 January, 2002 13

Choosing a host...
• Local or remote?

– migrate process if load on local host high

• Load sharing to optimise throughput?
– static: choose host at random/deterministically

– adaptive: observe state of the system, measure
load & use heuristics

• Many approaches
– simplicity preferred

– load measuring expensive.

24 January, 2002 14

Creating execution environment

• Allocate address space

• Initialise contents
– fill with values from file or zeroes

• for static address space but time consuming

– copy-on-write
• allow sharing of regions between parent & child

• physical copying only when either attempts to
modify (hardware page fault)

24 January, 2002 15

Copy-on-write

a) Before write b) After write

Shared
frame

A's page
table

B's page
table

Process A’s address space Process B’s address space

Kernel

RA RB

RB copied
from RA

RA, parent region RB, inherited region

new, copy

24 January, 2002 16

Role of threads in clients/servers

• On a single CPU system
– threads help to logically decompose problem

– not much speed-up from CPU-sharing

• In a distributed system, more waiting
– for remote invocations (blocking of invoker)

– for disk access (unless caching)

– obtain better speed up with threads

24 January, 2002 17

Multi-threaded client/server

Server

Server pool
(N threads)

Input-output

Client

Thread 2 makes

T1

Thread 1

requests to server

generates
data

Requests

Receipt &
queuing

24 January, 2002 18

Threads within clients

• Separate
– data production

– RMI calls to server

• Pass data via buffer

• Run concurrently

• Improved speed,
throughput

Thread 2Thread 2

RMIRMI

Thread 1Thread 1

callercaller
blockedblocked

Item 1Item 1

Item 2 & 3Item 2 & 3

Item 4Item 4

24 January, 2002 19

Server threads and throughput
 Assume stream of client requests, each 2ms

processing + 8ms I/O.

• Single thread
– max 100 client requests per second =1000/(2+8)

• Two threads, no disk caching
– max 125 client requests per second =1000/8

• Two threads, with disk caching (75% hit rate)
– max 400 client requests per second

=1000/(0.75*0+0.25*8)

24 January, 2002 20

Multi-threaded server architectures
• Worker pool

– fixed pool of worker threads, size does not change

– can accommodate priorities but inflexible

• Other architectures
– thread-per-request

– thread-per-connection

– thread-per-object

• Physical parallelism
– multi-processor machines (cf casper, SoCS file server;

noo-noo)

24 January, 2002 21

Thread-per-request

• Spawns
– new worker for each request

– worker destroys itself when
finished

• Allows max throughput
– no queuing

– no I/O delays

• but overhead of creation &
destruction high

ServerServer

remote

workers

I/O

objects

24 January, 2002 22

Thread-per-connection

• Create new thread for
each connection

• Multiple requests

• Destroy thread on
close

• Lower o/heads

• but unbalanced load

Server

remote

per-connection threads

objects

24 January, 2002 23

Thread-per-object

As per-connection, but
new thread created for
each object.remoteI/O

per-object threads

objects

24 January, 2002 24

Why threads not processes?
• Process context switching

– requires save/restore of execution environment
• registers, program counters, etc

• Threads within a process
– cheaper to create/manage

– no need to save execution environments (shared
between threads)

– resource sharing more efficient and convenient

– but less protection from interference by other threads

24 January, 2002 25

Storing execution environment

Execution environment Thread
Address space tables Saved processor registers
Communication interfaces, open files Priority and execution state (such as

BLOCKED)
Semaphores, other synchronisation
objects

Software interrupt handling information

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

24 January, 2002 26

An aside: Java threads
• Class Thread

– constructor/destructor, SUSPENDED/RUNNABLE

– priorities (useful for servlets, dynamic web pages)

• Synchronisation
– monitors (keyword synchronised)

– at most one thread within monitor

• Scheduling
– Preemptive (suspended at any time), non-preemptive

– no real-time thread scheduling

• More info www.cdk3.net and
– 06-02324 Real-Time Systems Programming

24 January, 2002 27

Java threads: management
 Thread(ThreadGroup group, Runnable target, String name)

Creates a new thread in the SUSPENDED state, which will belong to group and be
identified as name; the thread will execute the run() method of target.

setPriority(int newPriority), getPriority()
Set and return the thread’s priority.

run()
A thread executes the run() method of its target object, if it has one, and otherwise its own
run() method (Thread implements Runnable).

start()
Change the state of the thread from SUSPENDED to RUNNABLE.

sleep(int millisecs)
Cause the thread to enter the SUSPENDED state for the specified time.

yield()
Enter the READY state and invoke the scheduler.

destroy()
Destroy the thread.

24 January, 2002 28

Java threads: synchronisation
thread.join(int millisecs)

Blocks the calling thread for up to the specified time until thread has terminated.

thread.interrupt()
Interrupts thread: causes it to return from a blocking method call such as sleep().

object.wait(long millisecs, int nanosecs)
Blocks the calling thread until a call made to notify() or notifyAll() on object wakes the
thread, or the thread is interrupted, or the specified time has elapsed.

object.notify(), object.notifyAll()
Wakes, respectively, one or all of any threads that have called wait() on object.

24 January, 2002 29

Implementation of invocation

• Types of invocation
– system call, RMI/RPC call, sending a message…

• Performance critical!
– very high number of invocation per system lifetime

– high latencies over WANs, Internet

• Counting cost of invocation
– does it cross address space or not?

– synchronous or asynchronous?

– over the network or within computer?

24 January, 2002 30

Costing invocations over network

RPC/RMI (between computers)

User 1 User 2

Thread 1 Network Thread 2

Kernel 2Kernel 1

• Latency (=time of null invocation)
– 0.1millisecond for RPC vs fraction of microsecond for

local call

• Delay (=total RPC/RMI time experience by user)
– marshalling, thread switching, which protocol, etc

• Need to design OS carefully!

24 January, 2002 31

Factors affecting RPC/RMI delays

• Marshalling

• Data copying
– user to kernel, across network, etc

• Packet initialisation
– protocol headers, checksums

• Thread scheduling, context switching

• Waiting for acknowledgement
– TCP or UDP?

24 January, 2002 32

Concurrent invocations

• Idea (similar to client threads earlier)
– blocking invocations

– perform them concurrently

• Example: web browser
– issues separate HTTP GET requests for images within

webpage

– performed concurrently

• Gains
– improved total delay and throughput

– communication overlaps with rendering

24 January, 2002 33

Serialised and concurrent invocations

ServerClient

execute request

Send

Receive
unmarshal

marshal

Receive
unmarshal

process results

marshal
Send

process args

marshal
Send

process args

transmission

Receive
unmarshal

process results

execute request

Send

Receive
unmarshal

marshal

marshal
Send

process args

marshal
Send

process args

execute request

Send

Receive
unmarshal

marshal

execute request

Send

Receive
unmarshal

marshal
Receive

unmarshal
process results

Receive
unmarshal

process results
time

Client Server

Serialised invocations Concurrent invocations

24 January, 2002 34

Asynchronous invocation

• Non-blocking invocation
– client makes call (cf Mercury obtains promise)

– continues processing

• Response
– sometimes not needed

– otherwise, separate call to collect results,

– then claim on promise (test if results ready, block until
results ready)

• Improved delay and throughput

24 January, 2002 35

Summary
• OS support crucial to performance of distributed

systems
– threads/process management

– communication (sockets), protocols

– support for asynchronous/concurrent invocation

• Design issues
– structure and relationship of kernel & middleware

– selection of multi-threaded or multi-processor architecture

– understanding system requirements
• max number of requests, min acceptable delay, throughput

• network latency, bandwith, etc

