Operating System Support

Overview

* Functionality of the Operating System (OS)
— resource management (CPU, memory, ...)

e Processes and Threads
— similarities, differences
— multi-threaded servers and clients

e Implementation of...
— communication primitives
— Invocation

24 January, 2002 2

Functionality of OS

e Resource sharing

— CPU(single/multiprocessor machines)
e concurrent processes/threads
e communication/synchronisation primitives
» process scheduling

— memory(static/dynamic allocation to programs)
* memory manager

— file storageanddevices
« file manager, printer driver, etc

e OSkernel

— Implements CPU and memory sharing

— abstracts hardware
24 January, 2002

Core OS functionality

Process manager

Communication
manager

Thread manager Memory manager

Supervisor

24 January, 2002

Core OS components

Process manager
— creation and operations pmocesse¢= spacetiread$

Threads manager
— threads creation, synchronisation, scheduling

Communication manager
— communication between threads (sockets, semaphores)

Memory manager
— physical (RAM) and virtual (disk) memory

Supervisor
— hardware abstraction (interrupts, exceptions, caches)

24 January, 2002 5

Why middleware again...

* Network OS(UNIX, Windows NT)

— network transparergccess for remote files (NFS)
— notask/process scheduling across different nodes

e Distributed OS
— transparent process schedulamgoss nodes
— load balancing

— none in use. cost of switching OS too high, load
balancing not always easy to achieve

« Middleware
— built on top ofdifferentnetwork OSs
— offersdistributed resource sharing

24 January, 2002

System layers

Applications, services

Middleware
OS: kernel, 0OS1 0S2
libraries & Processes, threads, Processes, threads,
servers communication, ... communication, ...
Platform
Computer & Computer &
network hardware network hardware
Node 1 Node 2

24 January, 2002 7

In this lecture...

which OS mechanismare needed for middleware

« Concurrent processimf client/server processes
— creation, execution, etc
— data encapsulation
— protection against illegal access

* |Implementatiorof invocation
— communication (parameter passing, local or remote)
— scheduling of invoked operations

24 January, 2002 8

Protection

 Kernel
— complete access privileges to all physical resources
— executes iisupervisomode
« Applicationprograms
— have owraddress spag¢separate from kernel and others
— execute inisermode
e Accessto resources
— callsto kernel (system call trap), interrupts

— switchto kernel address space
— can be expensive in terms of time

24 January, 2002 9

Processes and threads

e Processes
— historically first abstraction of singteread of activity
— can rurnconcurrently CPU sharing if single CPU

— need owrexecution environment
» address space, registers, synchronisation resources (semaphores)

— scheduling requireswitchingof environment

* Threadq=lightweight processes)

— canshareexecution environment
* noneed for expensive switching

— can be created/destroyed dynamically
e multi-threadedprocesses
» increase@arallelismof operations (=speed up)

24 January, 2002 10

Process/thread address space

N=32 or 64
n n N
e Unit of virtual memory i
« One or moreegions Auiary oppasite.
. regions direction
— contiguous |
— non-overlapping
— gaps for growth E—
. v
* Allocation N
— newregion for each thread Heap
— sharingof some regions
« shared libraries, data,... Text
0

24 January, 2002 11

Process/thread creation

 OS kernel operation (cf UNLXork, exeg
« Varying policiesfor
— choice of host

o clusters, single- or multi-processors
 load balancing

— creation ofxecution environment
 allocate address space
* Initialise or copy from parent?

24 January, 2002

12

Choosing a host...

e Local or remote?
— migrateprocess if load on local host high

e Load sharing to optimise throughput?
— static choose hosiit randondeterministically

— adaptive observe statef the system, measure
load & use heuristics

 Many approaches
— simplicity preferred
— load measuring expensive.

24 January, 2002 13

Creating execution environment

» Allocateaddress space

e |nitialise contents

— fill with values from file or zeroes
o for static address space but time consuming
— COopy-on-write
« allow sharing of regions between parent & child

 physical copyingponly when either attempts to
modify (hardwargpage faul}

24 January, 2002 14

Copy-on-write

Process A’s address space

Process B’s address space

RB copied
RA, parent region RA from RA
Kernel
Shared
frame
A's page > - B's page
table table

a) Before write

24 January, 2002

b) After write

RB, inherited region

15

Role of threads In clients/servers

 On asingle CPUsystem
— threads help to logically decompose problem
— not much speed-up from CPU-sharing

e In adistributed systenmorewaiting
— for remote invocations (blocking of invoker)
— for disk access (unless caching)
— obtain bettespeed umwvith threads

24 January, 2002 16

Multi-threaded client/server

Thread 2 makes @
requests to server / 4
/ Receipt & O Input-output
Thread 1—— queuing /
rea |
GO G pale

generates

data / I\

Requests
Server pool

(N threads)
Client

Server

24 January, 2002 17

Threads within clients

Thread 1 Thread 2
e Separate

Item 1 ‘ — dataproduction
I — RMI callsto server

RMI
‘/I e Pass data via buffer
ller
caller e Runconcurrently
* Improved speed,

4/1 throughput

Item 4 ‘

Item2 & 3

24 January, 2002 18

Server threads and throughput

Assumestream of client requesteach 2ms
processing + 8ms I/O.

* Singlethread
— max 100 client requests per second =1000/(2+8)

e Two threadsno disk caching
— max 125 client requests per second =1000/8

* Two threads, withtdisk cachind75% hit rate)

— max 400 client requests per second
=1000/(0.75*0+0.25*8)

24 January, 2002 19

Multi-threaded server architectures

 Worker pool
— fixed pool of worker threads, size does not change
— can accommodate priorities botiexible

e Other architectures
— thread-per-request
— thread-per-connection
— thread-per-object

* Physical parallelism

— multi-processor machines (cf casper, SoCS file server;
N00-N00)

24 January, 2002 20

Thread-per-request

e Spawns
. OWOfkefS — newworker for each request
N .
 WICY B remote — worker destroys itself when

‘o / m Oviect finished
NV
. G e Allows max throughput
— N0 queuing
— no /O delays
* butoverhead of creation &
destruction high

Server

24 January, 2002 21

Thread-per-connection

per-connection threads

remote
o —p O .Iobjects

Server

24 January, 2002

Createnewthread for
each connection

Multiple requests

Destroy thread on
close

Lower o/heads
but unbalanced load

22

Thread-per-object

ser-object threads As per-connection, but

. (. new thread createfor
oM remate each object

® "(A o Q _.Iobjects

0/4 \ Ca—m

24 January, 2002 23

Why threads not processes?

* Procesgontext switching
— requiressavérestoreof execution environment
o registers, program counters, etc
e Threads within a process
— cheapeto create/manage

— No need to savexecution environments (shared
between threads)

— resource sharingpore efficient and convenient
— but less protectiofrom interference by other threads

24 January, 2002 24

Storing execution environment

Execution environment Thread

Address space tables Saved processor registers

Communication interfaces, open files Priority and execution state (such as
BLOCKED

Semaphores, other synchronisation Software interrupt handling information

objects

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

24 January, 2002 25

An aside: Java threads
ClassThread
— constructor/destructor, SUSPENDED/RUNNABLE
— priorities (useful foservlets dynamic web pages)

Synchronisation
— monitors (keyworgynchronisej
— at most one thread within monitor

Scheduling
— Preemptive (suspended at any time), non-preemptive
— no real-time thread scheduling

More infowww.cdk3.netand
— 06-02324 Real-Time Systems Programming

24 January, 2002 26

Java threads: management

Thread(ThreadGroup group, Runnable target, String name)
Creates a new thread in tB&)] SPENDEDstate, which will belong tgroup and be
identified asname the thread will execute thran() method ottarget

setPriority(int newPriority), getPriority()
Set and return the thread’s priority.

run()
A thread executes thran() method of its target object, if it has one, and otherwise its own
run() method Threadimplement€Runnablé.

start()
Change the state of the thread frBRISPENDELOO RUNNABLE

sleep(int millisecs)
Cause the thread to enter ®idSPENDEDstate for the specified time.

yield()
Enter theREADYstate and invoke the scheduler.

destroy()
Destroy the thread.

24 January, 2002 27

Java threads: synchronisation

thread.join(int millisecs)
Blocks the calling thread for up to the specified time uhtdadhas terminated.

thread.interrupt()
Interruptsthread causes it to return from a blocking method call suctiezeg()

object.wait(long millisecs, int nanosecs)
Blocks the calling thread until a call madentatify() or notifyAll() on objectwakes the
thread, or the thread is interrupted, or the specified time has elapsed.

object.notify(), object.notifyAll()
Wakes, respectively, one or all of any threads that have eadig onobject

24 January, 2002 28

Implementation of invocation

* Typesof invocation
— system call, RMI/RPC call, sending a message...

 Performance critical
— very high number of invocation per system lifetime
— high latencies over WANS, Internet

e Countingcost of invocation
— does itcross address spaoenot?

— synchronousr asynchronous
— over thenetworkor within computer?

24 January, 2002 29

RPC/RMI (between computers) ! !

— > | /\/\/\f>| —
| |

Costing invocations over network

’ Thread 2
— <—|<—/\/\/\/—| <

User 1 | I User 2

Kernel 1 Kernel 2

« Latency(=time ofnull invocation)

— 0.1millisecond for RPC vs fraction of microsecond for
local call

« Delay(=total RPC/RMI time experience by user)
— marshalling, thread switching, which protocol, etc

 Need to design OS carefully!

24 January, 2002 30

Factors affecting RPC/RMI delays

Marshalling

Data copying
— user to kernel, across network, etc

Packet initialisation
— protocol headers, checksums

Thread scheduling, context switching

Waiting for acknowledgement
— TCP or UDP?

24 January, 2002 31

Concurrent invocations

* |dea (similar to client threads earlier)
— blockinginvocations
— perform thentoncurrently

 Example: web browser
— IssuesseparatdHdTTP GET requests for images within
webpage
— performedconcurrently
e Gains
— Improved total delay and throughput
— communication overlaps with rendering

24 January, 2002 32

Serialised and concurrent invocations

Serialised invocations Concurrent invocations
process arg process args
marshal marshal
Send transmission Send
process args
marshal _
Receive Send Receive
Recelve \L\ unmarshal
execute request execute request
marshal marshal
Send Send.
/ ReceIVe
unmarshal
Receive Receive execute request
unmarshal unmarshal marshal
process resultg process results Send
process args /
masrgngl Receive
unmarshal
process results
Receive time
unmarshal
execute request
marshal
Send
Receive/
unmarshal
process resultg
Client Server Client Server

24 January, 2002 33

Asynchronous invocation

* Non-blockinginvocation
— client makes call (cf Mercury obtaipsomisg
— continues processing

 Response
— sometimes not needed
— otherwise, separatall to collectresults,

— thenclaim onpromise(test if results ready, block until
results ready)

* Improved delay and throughput

24 January, 2002 34

Summary

e OS supportrucial to performancef distributed
systems
— threadfprocesgnanagement
— communicatior{sockets), protocols
— support forasynchronousoncurreninvocation

e Design issues
— structure and relationship kérnel& middleware
— selection ofMmulti-threadedor multi-processoarchitecture

— understanding system requirements
* max number ofequestsmin acceptabldelay, throughput
* networklatency bandwith,etc

24 January, 2002 35

