
O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

1

Performance Metrics and Performance Metrics and
Scalability Analysis Scalability Analysis

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

2

v Requirements in performance and cost

v Performance metrics

v Work load and speed metrics

v Communication overhead measurement Analysis

v Theoretical concepts on Performance and Scalability

• Phase Parallel Model

• Speed up, Efficiency, Isoefficiency models

• Examples

Performance Metrics and Scalability Analysis

Lecture Outline

Following Topics will be discussed

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

3

Questions to be answered

v What are the user’s requirement in performance and cost?

v How one should measure the performance of application
programs?

v What kind of performance metrics should be used?

v What are the factors (parameters) affecting the performance?

v How can one determine the scalability of a parallel computer
executing a given application?

Performance Versus Cost
O

ct
o

b
e

r
1

0
 –

1
1

,
2

0
0

2
,

P
a

r.
C

o
m

p
 W

o
rk

sh
o

p
 a

t
II

T
-D

e
lh

i

4

How do we measure the performance of a computer system?

v Many people believe that execution time is the only reliable metric
to measure computer performance

Approach

v Run the user’s application time and measure wall clock time
elapsed

Remarks

v This approach is some times difficult to apply and it could permit
misleading interpretations.

v Pitfalls of using execution time as performance metric.

Ø Execution time alone does not give the user much clue to a
true performance of the parallel machine

Performance Versus Cost (Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

5

Types of performance requirement

Six types of performance requirements are posed by users:

v Executive time and throughput

v Processing speed

v System throughput

v Utilization

v Cost effectiveness

v Performance / Cost ratio

Remarks : These requirements could lead to quite different
conclusions for the same application on the same computer
platform

Performance Requirements
O

ct
o

b
e

r
1

0
 –

1
1

,
2

0
0

2
,

P
a

r.
C

o
m

p
 W

o
rk

sh
o

p
 a

t
II

T
-D

e
lh

i

6

Performance versus cost

v Execution time is critical to some applications

Ø A real time application, the user cares about whether the job is
guaranteed to finish within a time limit

Ø Example : Radar signal processing application

Processing Speed

v For many applications, the users may be interested in achieving a
certain processing speed rather than an execution time limit

Ø Example : Radar signal processing application

Performance Requirements
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

7

System Throughput

v Throughput is defined to be the number of jobs processed in a
unit time

Example : STAP Benchmarks, TPC Benchmarks

v Remark : Execution time is not only performance requirement, but
other performance requirement is needed.

Performance Requirements
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

8

Utilization and Cost Effectiveness

v Instead of searching for the shortest execution time, the user
may want to run his application more cost effectively

v High percentage of the CPU hours to be used for useful
computing

v Reduction of time spent in load imbalance and communication
overheads

Performance Requirements
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

9

Utilization and Cost Effectiveness

v A good indicator of cost-effectiveness is the utilization factor
which is ratio of the achieved speed to the peak speed of a given
computer.

Performance/Cost Ratio

v Performance/cost ratio of a computer system is defined as the
ratio of the speed to the purchasing price.

Performance Requirements
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

10

Remarks

v Higher Utilization corresponds to higher Gflop/s per dollar,
provided if CPU-hours are changed at a fixed rate.

v A low utilization always indicates a poor program or compiler.

v Good program could have a long execution time due to a large
workload, or a low speed due to a slow machine.

v Utilization factor varies from 5% to 38%. Generally the
utilization drops as more nodes are used.

v Utilization values generated from the vendor’s benchmark
programs are often highly optimized.

Performance Requirements

(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

11

The misleading peak performance / cost ratio

v Using the peak performance/cost ratio to compare system is
often misleading

Example : The peak performance cost ratio of some
supercomputers is much lower than those of others.
But its sustained performance is actually higher.

v Often, users need to use more than one metric in comparing
different parallel computing system

Ø The cost-effectiveness measure should not be confused
with the performance/cost ratio of a computer system

Ø If we use the cost-effectiveness or performance / cost ratio
alone, the current Pentium PC easily beat more powerful
systems

Performance Versus Cost
O

ct
o

b
e

r
1

0
 –

1
1

,
2

0
0

2
,

P
a

r.
C

o
m

p
 W

o
rk

sh
o

p
 a

t
II

T
-D

e
lh

i

12

Summary

v The execution time is just one of several performance
requirements a user may want to impose.

v The other include speed, throughput, utilization, cost-
effectiveness, performance/cost ratio, and scalability.

v Usually, a set or requirements may be imposed.

Performance Versus Cost
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

13

Workload and speed metrics

v Three metrics are frequently used to measure the computational
workload of a program

Ø The execution time : The first metric is tied to a specific
computer system. It may change when the C program is
executed on a different machine.

Ø The number of instructions executed : The second metric,
tied to an instruction set architecture (ISA), stays unchanged
when the program is executed on different machines with
same ISA.

Ø The number of floating-point operations executed : The
third metric is often architecture-independent.

Workload and Speed Metrics
O

ct
o

b
e

r
1

0
 –

1
1

,
2

0
0

2
,

P
a

r.
C

o
m

p
 W

o
rk

sh
o

p
 a

t
II

T
-D

e
lh

i

14

Workload Type Workload Unit Speed Unit

Execution time Seconds (s), CPU clocks Application per second

Instruction count Million instructions or
billion instruction

MIPS or BIPS

Floating-point
operation (flop)
count

Flop,
Million flop (Mflop),
billion flop (Gflop)

Mflop/s
Gflop/s

Workload and Speed Metrics

Summary of all three performance metrics

Workload and Speed Metrics
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

15

Instruction count

v The work load is the instructions that the machines executed, not
just the number of instructions in assembly program text.

v Instruction count may depend on the input data values. For such
an input dependent program, the workload is defined as the
instruction count for the worst-case input.

Example

A sorting program may execute 100000 instructions for a given input,
but only 4000 for another. For such an input-dependent program, the
workload is defined as the instruction count for the worst case input.

Workload and Speed Metrics
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

16

Instruction count

v Even with a fixed input, the instruction executed could be different
on different machines.

v Even with a fixed input, the instruction count of a program could be
different on the same machine when different compilers or
optimizations are used.

v Finally, a larger instruction count does not necessarily
mean the program needs more time to execute.

Workload and Speed Metrics
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

17

Execution time

v For a given program on a specific computer system, one can define
the workload as the total time taken to execute the program.This
execution time should be measured in terms of wall clock time, also
known as the elapsed time.

v Execution time depends on many factors explained below.

v The basic unit of workload is seconds.

Workload and Speed Metrics
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

18

Execution time

Choice of right kind
of algorithm

Data structure

Input data

Platform

Language

The machine
hardware and
operating system
affect performance

Workload and Speed Metrics
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

19

Execution
Time

Algorithm The algorithm used has a great input on execution time

Data
structure

How the data are structured also impacts performance

Input
The execution time for many applications does not
depend on the input data. For instance, an N-point FFT
will take 0(N log N) time.

Other programs, such as sorting and searching could
take different times on different input data.

When using execution time as the workload for such
input-dependent programs, we need to use either the
worst-case time or the time for baseline input data set.

Platform
Machine hardware and operating system affect
performance. Other factors include the memory hierarchy
(cache, main memory, disk), operating system versions.

Language used to code the application, compiler/linker
options/ and library functions reduce the execution time.Language

Workload and Speed Metrics (Contd..)
O

ct
o

b
e

r
1

0
 –

1
1

,
2

0
0

2
,

P
a

r.
C

o
m

p
 W

o
rk

sh
o

p
 a

t
II

T
-D

e
lh

i

20

Floating point count

v When application program is simple and its workload is not input-
dependent, the workload can be determined by code inspection.

v When the application code is complex, or when the workload
varies with different input data (e.g., sorting) one can measure the
workload by running the application on a specific machine.

v This specific run will generate a report of the number of flops or
instructions actually executed.

v This approach has been used in the NAS benchmark, where the
flop count is determined by an execution run time.

Workload and Speed Metrics
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

21

Rules for Counting Floating-Point Operations (NAS standards)

Operations
Flop

Count Comments on Rules

A[2*1] = B[j -1]+1.5*C - 2; 3 Add, subtract, or multiply each count as 1 flop
Index arithmetic not counted

Assignment not separately counted

X = Y; 1 An isolated assignment is counted as 1 flop

If (X>Y) Max = 2.0*X; 2 A comparison is counted as 1 flop

X = (float) i + 3.0; 2 A type conversion is counted as 1 flop

X = Y / 3.0 + sqrt(Z) 9 A division or square root is counted as 4 flop

X = sin(Y) - exp(Z); 17 A sine, exponential, etc. is counted as 8 flop

Workload and Speed Metrics
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

22

Caveats

v Using execution time or instruction count as the workload metric
leads to a strange phenomenon.

v The workload changes when the same application is run on
different systems.

v Workload can be determined only by executing the program.

v The flop count and the instruction count have another advantage:
their corresponding speed and utilization measures give some
clue as to how well the application is implemented.

v Highly tuned programs could achieve more. It is possible to
achieve 90% utilization in some numerical subroutines.

Workload and Speed Metrics
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

23

Summary of performance metrics

v To sum up, all three metrics are useful, but especially the flop
count and the execution time.

v In practice, the flop count workload is often determined by code
inspection, as described in the table.

v The execution time is often measured on a specific machine,
under a set of specific listing conditions including hardware
platform, compiler options, and input data set etc.

Remark : The flop count metric is more stable.

Workload and Speed Metrics
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

24

Computational Characteristics

The historical values of performance parameters for PVP, SMP, MPPs
and Clusters are

v Year of release in Market

v Clock Rate (MHz)

v Memory Capacity

v Machine Size

v Peak performance per node (Mflop/sec)

v Peak performance on n (> 1) nodes (Gflop/sec)

Computational Characteristics of Parallel Computers

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

25

The Memory Hierarchy

For each layer, the following three parameters play a vital role for
extracting performance

v Capacity (C) : How many bytes of data can be held by the
device ?

v Latency (L) : How much time is needed to fetch one from the
device ?

v Bandwidth (B) : For moving a large amount of data, how many
bytes can be transferred from the device in a
second ?

Computational Characteristics of Parallel Computers

(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

26

The Memory Hierarchy

The performance depends on how fast the system can move data
between processors and memories. The memory subsystem hierarchy
is shown in the figure.

Remote
Memory

Registers
Level-1
Cache

Level-2
Cache

Main
memory

Disk

u

1-100 GB

100-100 K cycles

1-300 MB/s

C < 2KB
L = 0 cycle

B = 1-32 GB/s

4-256 KB
0-2 cycles
1-16 GB/s

64 KB-4 MB

2-10 cycles

1-4 GB/s

16 MB-16 GB

10-100 cycles
0.4-2 GB/s

1-100 GB

100K-1M cycles

1-16 MB/s

Performance parameters of a typical memory hierarchy

Computational Characteristics of Parallel Computers

(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

27

v The faster and smaller devices are closer to the processor.

v The devices closest to the processor are the registers, which are
in fact part of the processor chip.

v The level - 1 cache is usually on the processor chip and the
level – 2 cache is off chip.

v The level – 3 cache is off chip shared by some processors in
SMP node.

v The main memory includes the local memory in a node, and the
global memory for the machines with a centralized shared
memory.

Computational Characteristics of Parallel Computers

(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

28

The time to execute a parallel program is

T = Tcomp +Tpar +Tinteract

where Tcomp, Tpar and Tinteract are the times needed to execute the
computation, the parallelism, and the interaction operations,
respectively. (Assume that interaction overheads are ignored, and no
overlapping is involved).

Parallelism and Interaction Overheads

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

29

Source of Parallelism overhead

v Process management, such as creation, termination, context
switching, etc.

v Grouping operations, such as creation or destruction of a process
group

v Process inquiry operations, such as asking for process
identification, rank, group, identification, group size, etc.

Parallelism Overheads

v Creating a process or a group is expensive on parallel computers.
This is important for the parallel program which is executed many
times to process raw data.

Parallelism and Interaction Overheads
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

30

Sources of interaction overheads

v Synchronization, such as barrier, locks critical regions, and events

v Aggregation, such as reduction and scan

v Communication, such as point-to-point and collective
communication and reading/writing of shared variables

v Idleness due to Interaction

Parallelism and Interaction Overheads
(Contd…)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

31

Parallelism and Interaction Overheads

Overheads Quantification

v Measurement conditions

v Measurement methods

v Expressions for overhead parallelism due to communications

v Point-to-Point Communication Communication overhead for
message length m (in bytes) (requirement of startup time,
asymptotic bandwidth)

v Collective communication and Collective computation

(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

32

Overhead measurement conditions

The following conditions are used to estimate the overhead involved.

v The data structures used (The data structures used are always
made small enough to fit into the node memory so that there will
not be page faults)

v The programming language used.

v The best complier options should be used.

v The message passing library used.

v The communication hardware and protocol used.

v To use wall clock time elapsed.

Parallelism and Interaction Overheads
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

33

Overhead measurement Methods

v Measuring point-point communication (ping-pong test) between
two nodes

v Measuring point-point communication involving n nodes and
collective communication performance

Interpretation of overhead measurement data

v Method 1 : Present the results in tabular form

v Method 2 : Present the data as curve

v Method 3 : Present the data using simple, closed-form expression
that can be used to estimate the overhead for various message
lengths and machine size.

Parallelism and Interaction Overheads
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

34

Remarks

v Knowing the overheads can help programmer decide how to best
develop a parallel program on a given parallel computer.

v Parallelism and interaction overheads are often large compared to
the basic computation time, and they vary from a system to
system.

v In some cases parallelism and interaction overheads are
significant and they should be quantified.

v The overhead values also vary greatly from one system to
another.

Parallelism and Interaction Overheads (Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

35

Phase Parallel model : Analysis

Consider a sequential program C consisting of a sequence of K major
component computational phases C1, C2, C3... CK.

We want to develop an efficient parallel program C by exploiting each
phase Ci with a Degree Of Parallelism DOPi. A phase parallel program
is depicted in the following figure

Phase C1 :
W1

T1(1)

DOP1

�

�
�

�

�
�

Phase Ci :
Wi

T1(i)

DOPi

� � �
�

�
�

�

�
�

�

�
�� � �

Phase Ck :
Wk

T1(k)

DOPk

Interaction Interaction

The phase parallel model of an application algorithm

Performance Metrics : Phase Parallel Model
O

ct
o

b
e

r
1

0
 –

1
1

,
2

0
0

2
,

P
a

r.
C

o
m

p
 W

o
rk

sh
o

p
 a

t
II

T
-D

e
lh

i

36

Phase Parallel model : Basic Metrics

While executing on p processors with 1≤ p ≤ DOPi , we have

v The parallel execution time for step Ci is Tp(i)=T1(i) / p,

v The total parallel execution time over p nodes becomes

Ø Tpar and Tinteract denote all parallelism and interaction overheads.

min (DOPi, n)Σ
1 ≤ i ≤ k

Tn =

T1 (i) +Tpar +Tinteract

Performance Metrics: Phase Parallel Model

(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

37

Remark

1. In many cases, the total overhead is dominated by the
communication overhead.

2. The implementation of point-to-point and collective
communication and computation overhead for various message
sizes in MPI play a important role for this overhead.

3. These metrics will help the Application User to know about
performance issues of a particular code.

4. These inequalities are useful to estimate the parallel execution
time

Performance Metrics: Phase Parallel Model (Contd..)
O

ct
o

b
e

r
1

0
 –

1
1

,
2

0
0

2
,

P
a

r.
C

o
m

p
 W

o
rk

sh
o

p
 a

t
II

T
-D

e
lh

i

38

Notation Terminology Definition

T1 Sequential time T1 = T1 (i)Σ
1 ≤≤ i ≤≤ k

Tp Parallel time,
p-node time

Tp = T1 (i)
1 ≤≤ i ≤≤ k

Σ
min (DOPi, p)

+ Tpar + Tinteract

T∞∞
Critical path

T∞∞ = T1 (i)
1 ≤≤ i ≤≤ k

Σ
DOPi

Pp p-node speed Pp= W / Tp

Ep p-node efficiency Ep = Sp / p = T1 / (pTp)

T0 Total overhead T0 = Tpar + Tinteract

Sp Speedup Sp= T1 / Tp

Phase parallel model

Performance Metrics: Phase Parallel Model (Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

39

v Speedup : Speedup Tp is defined as the ratio of the serial runtime
of the best sequential algorithm for solving a problem to the time
taken by the parallel algorithm to solve the same problem on p
processor

v The p processors used by the parallel algorithm are assumed to be
identical to the one used by the sequential algorithm

v Cost : Cost of solving a problem on a parallel system is the product
of parallel runtime and the number of processors used

E = p.Sp

Performance Metrics of Parallel Systems
O

ct
o

b
e

r
1

0
 –

1
1

,
2

0
0

2
,

P
a

r.
C

o
m

p
 W

o
rk

sh
o

p
 a

t
II

T
-D

e
lh

i

40

v Efficiency : Ratio of speedup to the number of processors.

v Efficiency can also be expressed as the ratio of the execution time
of the fastest known sequential algorithm for solving a problem to
the cost of solving the same problem on p processors

v The cost of solving a problem on a single processor is the
execution time of the known best sequential algorithm

v Cost Optimal : A parallel system is said to be cost-optimal if the
cost of solving a problem on parallel computer is proportional to the
execution time of the fastest known sequential algorithm on a
single processor.

Performance Metrics of Parallel Systems (Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

41

v Cost optimal parallel system has an efficiency of θ (1)

v Cost is sometimes referred to as work or processor-time product
and a cost-optimal systems is also known as PTP optimal system

v Using fewer than the maximum number of processors to execute a
parallel algorithm is called scaling down a parallel system in
terms of number of processors

Performance Metrics of Parallel Systems (Contd..)
O

ct
o

b
e

r
1

0
 –

1
1

,
2

0
0

2
,

P
a

r.
C

o
m

p
 W

o
rk

sh
o

p
 a

t
II

T
-D

e
lh

i

42

A Ideal Scalability metric should have the following two
properties

1. It predicts the workload growth rate with respect to the increase
of machine size.

2. It is consistent with execution time, i.e., a more scalable system
always has a shorter execution time.

Remark :

v It can be shown that under very reasonable conditions, a
system with a small isoutlization (thus more scalable) always
has a shorter execution time.

v Systems with a small isoutilization are more scalable than
those with a large one.

Scalability and Speedup Analysis
(Contd..)

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

43

Summary of Performance metrics

v Performance metrics and measurement of performance of a
parallel program have been explained.

v Work load and speed metrics are explained

v Types of overhead in parallel computing are discussed.

v Theoretical concepts on Performance and Scalability

• Phase Parallel model, Speed up, Efficiency, Isoefficiency,
Isospeed and Isoutilization metrics are explained.

Conclusions
O

ct
o

b
e

r
1

0
 –

1
1

,
2

0
0

2
,

P
a

r.
C

o
m

p
 W

o
rk

sh
o

p
 a

t
II

T
-D

e
lh

i

44

1. Ernst L. Leiss, Parallel and Vector Computing A practical Introduction, McGraw-Hill
Series on Computer Engineering, Newyork (1995).

2. Albert Y.H. Zomaya, Parallel and distributed Computing Handbook, McGraw-Hill
Series on Computing Engineering, Newyork (1996).

3. Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis, Introduction to Parallel
Computing, Design and Analysis of Algorithms, Redwood City, CA,
Benjmann/Cummings (1994).

4. William Gropp, Rusty Lusk, Tuning MPI Applications for Peak Performance, Pittsburgh
(1996)

5. Ian T. Foster, Designing and Building Parallel Programs, Concepts and tools for Parallel
Software Engineering, Addison-Wesley Publishing Company (1995).

6. Kai Hwang, Zhiwei Xu, Scalable Parallel Computing (Technology Architecture
Programming) McGraw Hill Newyork (1997)

7. Culler David E, Jaswinder Pal Singh with Anoop Gupta, Parallel Computer Architecture,
A Hardware/Software Approach, Morgan Kaufmann Publishers, Inc, (1999)

References

O
ct

o
b

e
r

1
0

 –
1

1
,

2
0

0
2

,
P

a
r.

C
o

m
p

 W
o

rk
sh

o
p

 a
t

II
T

-D
e
lh

i

45

