

Wo	rkload and Speed Me	(Contd)		
Workload and Sp	eed Metrics			
Summary of all three performance metrics				
Workload Type	Workload Unit	Speed Unit		
Execution time	Seconds (s), CPU clocks	Application per second		
Instruction count	Million instructions or billion instruction	MIPS or BIPS		
Floating-point operation (flop) count	Flop, Million flop (Mflop), billion flop (Gflop)	Mflop/s Gflop/s		

Workl	oad ar	d Speed Metrics (Contd)
Rules for Counting Flo	pating-P	oint Operations (NAS standards)
Operations	Flop Count	Comments on Rules
A[2*1] = B[j -1]+1.5*C - 2;	3	Add, subtract, or multiply each count as 1 flop Index arithmetic not counted Assignment not separately counted
X = Y;	1	An isolated assignment is counted as 1 flop
If (X>Y) Max = 2.0*X;	2	A comparison is counted as 1 flop
X = (float) i + 3.0;	2	A type conversion is counted as 1 flop
X = Y / 3.0 + sqrt(Z)	9	A division or square root is counted as 4 flop
X = sin(Y) - exp(Z);	17	A sine, exponential, etc. is counted as 8 flop

Performance Metrics: Phase Parallel Model (C					
Phase pa	arallel model				
Notation	Terminology	Definition			
T ₁	Sequential time	$T_1 = \sum_{\substack{1 \le i \le k}} T_1(i)$			
T_{p}	Parallel time, <i>p</i> -node time	$T_{p} = \sum_{\substack{1 \le i \le k \\ \min(DOP_{i}, p)}} T_{par} + T_{interact}$			
$T_{_{\infty}}$	Critical path	$T_{\infty} = \sum_{\substack{1 \leq i \leq k \\ DOP_{i}}} \frac{T_{1}(i)}{DOP_{i}}$			
Sp	Speedup	$S_p = T_1 / T_p$			
Pp	<i>p</i> -node speed	$P_p = W / T_p$			
Ep	<i>p</i> -node efficiency	$E_p = S_p / p = T_1 / (pT_p)$			
το	Total overhead	$T_0 = T_{par} + T_{interact}$			

		References						
	1.	Ernst L. Leiss, Parallel and Vector Computing A practical Introduction, McGraw-Hill Series on Computer Engineering, Newyork (1995).						
Ē	2.	Albert Y.H. Zomaya, Parallel and distributed Computing Handbook, McGraw-Hill Series on Computing Engineering, Newyork (1996).						
at IIT-Delb	3.	Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis, Introduction to Parallel Computing, Design and Analysis of Algorithms, Redwood City, CA, Benjmann/Cummings (1994).						
orkshop	4.	William Gropp, Rusty Lusk, Tuning MPI Applications for Peak Performance, Pittsburgh (1996)						
comp W	5.	Ian T. Foster, Designing and Building Parallel Programs, Concepts and tools for Parallel Software Engineering, Addison-Wesley Publishing Company (1995).						
2, Par.(6.	Kai Hwang, Zhiwei Xu, Scalable Parallel Computing (Technology Architecture Programming) McGraw Hill Newyork (1997)						
r 10 –11, 200	 7. Culler David E, Jaswinder Pal Singh with Anoop Gupta, Parallel Computer Archite A Hardware/Software Approach, Morgan Kaufmann Publishers, Inc, (1999) 							
Octobe		44						

