First Order Predicate Logic

Lecture 4

First Order Predicate Logic

Limitation of Propositional Logic

- The facts:
- "peter is a man", "paul is a man", "john is a man" can be symbolized by P, Q and R respectively in propositional logic,
- Can't draw any conclusions about similarities between P, Q and R.
- Better to represent these facts as
- MAN(peter), MAN(paul) and MAN(john).

Cont...

- Even more difficult to represent sentences like "All men are mortal" in propositional logic.
- Such sentences really need quantification.
- In Predicate Logic, these limitations are removed to great extent.
- Predicate Logic is logical extension of propositional logic.
- First Order Predicate Logic is one where the quantification is over simple variables.

Predicate Calculus

- It has three more logical notions as compared to propositional calculus.
- Terms
- Predicates
- Quantifiers (universal or existential quantifiers i.e. "for all' and "there exists")
- Term is
- a constant (single individual or concept i.e.,5,john etc.),a variable that stands for different individuals,
- a function: a mapping that maps n terms to a term i.e., if f is n place function symbol and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.

Cont...

- Predicate : a relation that maps n terms to a truth value true (T) or false (F).
- LOVE (john , mary)
- LOVE(father(john), john)
- LOVE is a predicate. father is a function.
- Quantifiers: Variables are used in conjunction with quantifiers.
- There are two types of quantifiers viz.., "there exist" ($\left.{ }^{(}\right)$ and "for all" (\forall).
- "every man is mortal" can be represented as $(\forall x)(\operatorname{MAN}(x) \rightarrow \operatorname{MORTAL}(x))$.

Examples

- A statement " x is greater than y " is represented in predicate calculus as GREATER(x, y).
- It is defined as follows:

$$
\begin{aligned}
\operatorname{GREATER}(x, y)= & T, \text { if } x>y \\
= & F, \text { otherwise }
\end{aligned}
$$

- The predicate names GREATER takes two terms and map to T or F depending upon the values of their terms

Examples - Cont...

- A statement "john loves everyone" is represented as
- $(\forall x) \operatorname{LOVE}(j o h n, x)$ which maps it to true when x gets instantiated to actual values.
- A statement "Every father loves his child" is represented as
- ($\forall \mathrm{x})$ LOVE(father $(\mathrm{x}), \mathrm{x})$.
- Here father is a function that maps x to his father.
- The predicate name LOVE takes two terms and map to T or F depending upon the values of their terms.

First Order Predicate Calculus

The first order predicate calculus (FOPC) is a formal language.

- Basic rules for formula in Predicate Calculus are same as those of Propositional Calculus.
- A wide variety of statements are expressed in contrast to Propositional Calculus

Well-formed Formula

- Well-formed formula in FOPC is defined recursively as follows:
- Atomic formula $P\left(t_{1}, \ldots, t_{n}\right)$ is a well-formed formula, where P is a predicate symbol and t_{1}, \ldots, t_{n} are the terms. It is also called atom.
- If α and β are well-formed formulae, then $\sim(\alpha),(\alpha \vee \beta)$, $(\alpha \Lambda \beta),(\alpha \rightarrow \beta)$ and $(\alpha \leftrightarrow \beta)$ are well-formed formulae.
- If α is a well-formed formula and x is a free variable in α, then $(\forall x) \alpha$ and $(\exists x) \alpha$ are well-formed formulae.
- Well-formed formulae are generated by a finite number of applications of above rules.

Example

Example: Translate the text "Every man is mortal. John is a man. Therefore, John is mortal" into a FOPC formula.
Solution:Let MAN(x), MORTAL(x) represent that x is a man and x is mortal respectively.

- Every man is mortal : $(\forall x)(\operatorname{MAN}(x) \rightarrow \operatorname{MORTAL}(x))$
- John is a man : MAN(john)
- John is mortal : MORTAL(john)

The whole text can be represented by the following formula.

$(\forall x)((\operatorname{MAN}(x) \rightarrow \operatorname{MORTAL}(x)) \Lambda$ MAN(john)) \rightarrow MORTAL(john)

Prof Saroj Kaushik, CSE, IIT Delhi

First Order Predicate Logic

- First order predicate calculus becomes First Order Predicate Logic if inference rules are added to it.
- Using inference rules one can derive new formula using the existing ones.
- Interpretations of Formulae in Predicate Logic
- In propositional logic, an interpretation is simply an assignment of truth values to the atoms.
- In Predicate Logic, there are variables, so we have to do more than that.

Interpretation

- An interpretation of a formula α in FOL consists of
- a non empty domain D and
- an assignment of values to each constant, function symbol and predicate symbol occurring in α.
- It is denoted by I and is defined as follows:
- Assign a value to each constant from the domain D.
- Each n-place function f (mapping from D^{n} to D) is assigned a value from D such as $f\left(x_{1}, \ldots, x_{n}\right)=x$, where $\left(x_{1}, \ldots, x_{n}\right) \in D^{n}$ and $x \in D$.
- Assign a value from a set $\{T, F\}$ to each n-place predicate P (mapping from D^{n} to $\{T, F\}$). Here T represents true value and F represents false value.

Interpretation - Cont...

- The quantifiers $(\forall x)$ and $(\exists x)$ are interpreted as follows:
- $(\forall x)$ will be interpreted as "for all elements x such that $x \in D "$
$-(\exists x)$ as "there exist x such that $x \in D$ ".
- We use notation $\mathrm{I}[\alpha]$ to represents that α is evaluated under interpretation I over a domain D.
- $I[\alpha]$ under interpretation I over a domain D cab be evaluated to be true or false.

Interpretation - Cont...

- Let α and β are formulae and I is an interpretation over any domain D. The following holds true.
$-\mathrm{I}[\alpha \Lambda \beta]=\quad \mathrm{I}[\alpha] \Lambda I[\beta]$
- $|[\alpha \vee \beta]=\quad|[\alpha] \vee I[\beta]$
$-\mathrm{I}[\alpha \rightarrow \beta]=\quad \mathrm{I}[\alpha] \rightarrow \mathrm{I}[\beta]$
- I[$\sim \alpha] \quad \sim \quad \sim \mid[\alpha]$
- For any interpretation I and a formula using $(\forall x) \&(\exists x)$, the following results holds true.

$$
\begin{array}{rlll}
-\mathrm{I}[(\forall x) \mathrm{P}(\mathrm{x})] & =\mathrm{T} & \text { iff } \mathrm{I}[\mathrm{P}(\mathrm{x})]=\mathrm{T}, \forall \mathrm{x} \in \mathrm{D} \\
& =\mathrm{F}, & & \text { otherwise } \\
-\mathrm{I}[(\exists \mathrm{x}) \mathrm{P}(\mathrm{x})] & & =\mathrm{T} & \text { iff } \exists \mathrm{c} \in \mathrm{D} \text { such that } \mathrm{I}[\mathrm{P}(\mathrm{c})]=\mathrm{T} \\
& =F, & & \text { otherwise }
\end{array}
$$

Example - Interpretation

Let $\alpha:(\forall \mathrm{x})(\exists \mathrm{y}) \quad \mathrm{P}(\mathrm{x}, \mathrm{y})$ be a formula. Evaluate α under the following interpretation I .

Example - Cont...

Solution: Consider the following cases:

- If $x=1$, then $\exists 2 \in D$ such that $I[P(1,2)]=T$
- If $x=2$, then $\exists 1 \in D$ such that $I[P(2,1)]=T$
- Therefore, $\mathrm{I}[\alpha]=\mathrm{I}[(\forall \mathrm{x})(\exists \mathrm{y}) \mathrm{P}(\mathrm{x}, \mathrm{y})]=\mathrm{T}$ i.e., α is true under above interpretation.

Exercise

- Consider a formula $\alpha:(\forall x)(P(x) \rightarrow Q(f(x), c))$ and the following interpretation

$$
\begin{aligned}
& \mathrm{D}=\{1,2\} ; \mathrm{c}=1 ; \mathrm{f}(1)=2, \mathrm{f}(2)=1 \\
& \mathrm{I}[\mathrm{P}(1)]=\mathrm{F}, \mathrm{I}[\mathrm{P}(2)]=\mathrm{T} \\
& \mathrm{I}[\mathrm{Q}(1,1)]=\mathrm{T}, \mathrm{I}[\mathrm{Q}(1,2)]=\mathrm{T} \\
& \mathrm{I}[\mathrm{Q}(2,1)]=\mathrm{F}, \mathrm{I}[\mathrm{Q}(2,2)]=\mathrm{T}
\end{aligned}
$$

- Find the truth value of

$$
\alpha:(\forall x)(P(x) \rightarrow Q(f(x), c)) \text { under I - (Ans: true) }
$$

Definitions

- A formula α is said to be consistent (satisfiable)
- if and only if there exists an interpretation I such that $I[\alpha]=T$.
- Alternatively, we say that I is a model of α or I satisfies α.
- A formula α is said to be inconsistent (unsatisfiable) if and only if
$-\exists$ no interpretation that satisfies α or there exists no model for α.
- A formula α is valid if and only if for every interpretation $I, I[\alpha]=T$.
- A formula α is a logical consequence of a set of formulae $\{\alpha 1, \alpha 2, \ldots, \alpha n\}$ if and only if
- for every interpretation I, if $\mathrm{I}\left[\alpha_{1} \Lambda \ldots \Lambda \alpha_{n}\right]=\mathrm{T}$, then $\mathrm{I}[\alpha]=\mathrm{T}$.

Inference Rules in Predicate Logic

Modus Ponen Rule:
Lemma 1: If $\alpha:(\forall x)(P(x) \rightarrow Q(x))$ and $\beta: P(c)$ are two formulae, then $Q(c)$ is a logical consequence of α and β, where c is a constant.
Modus Tollen Rule:
Lemma 2: If $\alpha:(\forall \mathrm{x})(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x}))$ and β : $\sim Q(c)$ are two formulae, then $\sim P(c)$ is a logical consequence of α and β, where c is a constant.

Example

- Show that δ is a logical consequence of α and β

$$
\begin{array}{lll}
\alpha & \vdots & (\forall x)(P(x) \rightarrow \sim Q(x)) \\
\beta & \vdots & (\exists x)(Q(x) \Lambda R(x)) \\
\delta & : & (\exists x)(R(x) \Lambda \sim P(x))
\end{array}
$$

Solution: Let I be any interpretation over any domain D.

- Assume that I models $\alpha \Lambda \beta$ i.e., $I[\alpha \Lambda \beta]=T$ over D.
- i.e., $I[(\forall x)(P(x) \rightarrow \sim Q(x))]=\quad T$
- and $I[(\exists \mathrm{x})(\mathrm{Q}(\mathrm{x}) \Lambda \mathrm{R}(\mathrm{x}))]=\mathrm{T}$

Cont...

- From (2), there exist some constant $c \in D$ such that

$$
\begin{array}{llll}
-\mathrm{I}[(\mathrm{Q}(\mathrm{c}) & \Lambda \mathrm{R}(\mathrm{c}))]= & \mathrm{T} \\
\text { - i.e., } & \mathrm{IQ}(\mathrm{c})]= & \mathrm{T} \\
\text { - and } & \mathrm{IR}(\mathrm{c})]= & \mathrm{T} \tag{5}
\end{array}
$$

- From (4),
- I[~ Q(c)] $=\quad \mathrm{F}$
- From (1),
$-\mathrm{I}[\mathrm{P}(\mathrm{c}) \rightarrow \sim \mathrm{Q}(\mathrm{c})]=\mathrm{T}$,
where c is the same constant
$-\mathrm{I}[\mathrm{P}(\mathrm{c})] \rightarrow \quad \mathrm{I}[\sim \mathrm{Q}(\mathrm{c})]=\quad \mathrm{T}$
- From (6) and (7), we get
- $[$ [$\mathrm{P}(\mathrm{c})]$
$=\quad F$
$-\mathrm{I}[\sim \mathrm{P}(\mathrm{c})] \quad=\quad \mathrm{T}$

Cont...

- From (5) and (8), we get

$$
\begin{array}{lll}
-I[R(c)] \Lambda I[\sim P(c)] & = & T \text { i.e. } \\
-I[R(c) \Lambda \sim P(c)] & = & T
\end{array}
$$

- According to the definition of interpretation, we get

$$
-I[(\exists x)(R(x) \Lambda \sim P(x))]=\quad T \text { i.e. }
$$

$$
-I[\delta] \quad=\quad \mathrm{T}
$$

- Hence,
$-\delta$ is a logical consequence of α and β.
- This is a direct proof, often difficult.

Semantic Tableaux (Pred Logic)

- There are four more rules handling variables in a predicate formula in addition to one given for Propositional logic.
- Let us denote a formula containing a variable x by $\alpha[\mathrm{x}]$.

Rule 10: $\left\lvert\, \begin{aligned} & (\forall \mathrm{x}) \alpha[\mathrm{x}] \\ & \alpha[\mathrm{t}]\end{aligned}\right.$
for any ground term t, where t is a term free from variables.

Rules - Cont...

Rule 11:

$$
\left\lvert\, \begin{aligned}
& \sim\{(\forall x) \alpha[x]\} \\
& \sim \alpha[c]
\end{aligned}\right.
$$

for any new constant c not occurring in α
Rule 12:
$\left\lvert\, \begin{aligned} & (\exists \mathrm{x}) \alpha[\mathrm{x}] \\ & \alpha[\mathrm{c}]\end{aligned}\right.$
for any new constant c
Rule 13:

$$
\left\lvert\, \begin{aligned}
& \sim\{(\exists x) \alpha[x]\} \\
& \sim \alpha[t]
\end{aligned}\right.
$$

for any ground term t

Few Definitions

- A path in a tableaux is contradictory or closed if some atomic formulae α and $\sim \alpha$ appear on the same path.
- If all the paths of a tableau are closed, then it is called a contradictory tableaux.
- A tableau proof of a formula α is a contradictory tableau with root as $\sim \alpha$.
- Let α be any formula. If tableaux with α as a root is a contradictory tableaux, then α is said to be inconsistent otherwise α is said to be consistent.
- A formula α is said to be tableau provable (denoted by |- α) if a tableau constructed with $\sim \alpha$ as root is a contradictory tableau.

Example

- Show that the formula

$$
(\forall x)(P(x) \Lambda \quad \sim(Q(x) \rightarrow P(x)))
$$

is inconsistent.

Solution:

- We have to show that
- tableau for $[(\forall x)(P(x) \Lambda \sim(Q(x) \rightarrow P(x)))]$ as a root is a contradictory tableau. Then by definition we can infer that the formula is inconsistent.

Example - Cont...

\{Tableau root\}

$$
\begin{align*}
& (\forall x)(P(x) \Lambda \sim(Q(x) \rightarrow P(x)) \tag{1}\\
& P(t) \Lambda \sim(Q(t) \rightarrow P(t)) \tag{2}\\
& \text { where } t \text { is any ground term } \\
& \text { where } t \text { is any ground term } \\
& \text { P(t) } \\
& \sim(Q(t) \rightarrow P(t)) \tag{3}\\
& \text { Q(t) } \\
& \sim P^{(t)} \\
& \text { Closed }\{\mathrm{P}(\mathrm{t}), \sim \mathrm{P}(\mathrm{t})\}
\end{align*}
$$

\{Apply R10 on 1\}
\{Apply R1 on 2\}
\{Apply R7 on 3\}

Prof Saroj Kaushik, CSE, IIT Delhi

Soundness and completeness

Theorem: (Soundness and completeness) :
A formula α is valid ($\mid=\alpha$) iff α is tableau provable (| $-\alpha$).
Example: Show a validity of the following formula using tableaux method.

$$
(\forall x) P(x) \rightarrow(\exists x) P(x)
$$

Solution: If we show that

$\sim[(\forall x) P(x) \rightarrow(\exists x) P(x)]$ has a contradictory tableau then α is tableau provable and hence by above theorem $(\forall x) \mathrm{P}(\mathrm{x}) \rightarrow$ $(\exists x) P(x)$ is valid.

More Definitions

- A set of formulae $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ is said to be inconsistent if a tableau with root as ($\alpha_{1} \Lambda \alpha_{2} \quad \Lambda$ $\ldots . . \Lambda \alpha_{n}$) is a contradictory tableau.
- Proof of a formula α from the set $\sum=\left\{\alpha_{1}, \alpha_{2}, \ldots . ., \alpha_{n}\right.$) is a contradictory tableau with root as ($\alpha_{1} \Lambda \alpha_{2} \quad \Lambda$ $\left.\ldots . . \Lambda \alpha_{n} \Lambda \sim \alpha\right)$.
- Alternatively, we say that α is tableau provable from Σ and denoted by $\sum \mid-\alpha$.
- A formula α is a logical consequence of \sum iff α is tableau provable from \sum and is denoted by $\sum \mid-\alpha$.

Exercises

I. Translate the following English sentences into Predicate Logic

- Everyone is loyal to someone.
- All Romans were either loyal to Caesar or hated him.
- For every number, there is one and only one immediate successor.
- There is no number for which 0 is immediate successor.
II. Evaluate truth values of the following formulae under the interpretation I (define your own interpretations).
$-(\exists x)(P(f(x)) \Lambda \quad Q(x, f(c)))$
$-(\exists x)(P(x) \Lambda Q(x, c))$
$-(\exists x)(P(x) \rightarrow Q(x, c))$
- $(\forall x)(\exists y)(P(x) \wedge Q(x, y))$
$-(\forall x)(\exists y)(P(x) \rightarrow Q(f(c), y))$
III. Transform the following formulae into PNF and then into Skolem Standard Form.
- $(\forall x)(\exists y)(Q(x, y) \rightarrow P(x))$
- $(\forall x)((\exists y) P(x, y) \rightarrow \sim((\exists z) Q(z) \Lambda R(x)))$
$-(\forall x)(\exists y) P(x, y) \rightarrow((\exists y) P(x, y)$
- $(\forall x)((\exists y) P(x, y) \Lambda((\exists z) Q(z) \Lambda R(x)))$
$-(\forall x)(P(x) \rightarrow Q(x)) \rightarrow((\exists x) P(x) \rightarrow(\exists x) Q(x))$

