First Order Predicate Logic

Lecture 4

First Order Predicate Logic

Limitation of Propositional Logic

- The facts:
 - "peter is a man", "paul is a man", "john is a man" can be symbolized by P, Q and R respectively in propositional logic,
- Can't draw any conclusions about similarities between P, Q and R.
 - Better to represent these facts as
 - MAN(peter), MAN(paul) and MAN(john).

Cont...

- Even more difficult to represent sentences like "All men are mortal" in propositional logic.
 - Such sentences really need quantification.
- In Predicate Logic, these limitations are removed to great extent.
- Predicate Logic is logical extension of propositional logic.
- First Order Predicate Logic is one where the quantification is over simple variables.

Predicate Calculus

- It has three more logical notions as compared to propositional calculus.
 - Terms
 - Predicates
 - Quantifiers (universal or existential quantifiers i.e. "for all' and "there exists")

Term is

- a constant (single individual or concept i.e.,5,john etc.),a variable that stands for different individuals,
- a function: a mapping that maps n terms to a term i.e., if f is n-place function symbol and $t_1, ..., t_n$ are terms, then $f(t_{1_1}, ..., t_n)$ is a term.

Cont...

- Predicate : a relation that maps n terms to a truth value true (T) or false (F).
 - LOVE (john , mary)
 - LOVE(father(john), john)
 - LOVE is a predicate. father is a function.
- Quantifiers: Variables are used in conjunction with quantifiers.
 - There are two types of quantifiers viz.., "there exist" (\exists) and "for all" (\forall).
 - "every man is mortal" can be represented as $(\forall x) (MAN(x) \rightarrow MORTAL(x)).$

Examples

A statement "x is greater than y" is represented in predicate calculus as GREATER(x, y).

It is defined as follows:

GREATER(x, y) = T, if x > y= F, otherwise

The predicate names GREATER takes two terms and map to T or F depending upon the values of their terms

Examples – Cont...

- A statement "john loves everyone" is represented as
 - $(\forall x)$ LOVE(john , x) which maps it to true when x gets instantiated to actual values.
- A statement "Every father loves his child" is represented as
 - $(\forall x)$ LOVE(father(x), x).
 - Here *father* is a function that maps x to his father.
- The predicate name LOVE takes two terms and map to T or F depending upon the values of their terms.

First Order Predicate Calculus

- The first order predicate calculus (FOPC) is a formal language.
 - Basic rules for formula in Predicate Calculus are same as those of Propositional Calculus.
 - A wide variety of statements are expressed in contrast to Propositional Calculus

Well-formed Formula

- Well-formed formula in FOPC is defined recursively as follows:
 - Atomic formula $P(t_1, ..., t_n)$ is a well-formed formula, where P is a predicate symbol and $t_1,...,t_n$ are the terms. It is also called atom.
 - If α and β are well-formed formulae, then ~ (α), ($\alpha \lor \beta$), ($\alpha \land \beta$), ($\alpha \land \beta$), ($\alpha \rightarrow \beta$) and ($\alpha \leftrightarrow \beta$) are well-formed formulae.
 - If α is a well-formed formula and x is a free variable in α , then $(\forall x)\alpha$ and $(\exists x)\alpha$ are well-formed formulae.
 - Well-formed formulae are generated by a finite number of applications of above rules.

Example

Example: Translate the text "Every man is mortal. John is a man. Therefore, John is mortal" into a FOPC formula.

Solution:Let MAN(x), MORTAL(x) represent that x is a man and x is mortal respectively.

- Every man is mortal : $(\forall x)$ (MAN(x) \rightarrow MORTAL(x))
- John is a man : MAN(john)
- John is mortal : MORTAL(john)

The whole text can be represented by the following formula.

 $\begin{array}{l} (\forall x) \; ((MAN(x) \rightarrow MORTAL(x)) \; \Lambda \; MAN(john)) \\ \rightarrow MORTAL(john) \end{array}$

First Order Predicate Logic

- First order predicate calculus becomes First Order Predicate Logic if inference rules are added to it.
- Using inference rules one can derive new formula using the existing ones.
- Interpretations of Formulae in Predicate Logic
 - In propositional logic, an interpretation is simply an assignment of truth values to the atoms.
 - In Predicate Logic, there are variables, so we have to do more than that.

Interpretation

- An *interpretation* of a formula α in FOL consists of
 - a non empty domain D and
 - an assignment of values to each constant, function symbol and predicate symbol occurring in α .

It is denoted by I and is defined as follows:

- Assign a value to each constant from the domain D.
- Each n-place function f (mapping from Dⁿ to D) is assigned a value from D such as $f(x_1, ..., x_n) = x$, where $(x_1, ..., x_n) \in D^n$ and $x \in D$.
- Assign a value from a set {T, F} to each n-place predicate P (mapping from Dⁿ to {T, F}). Here T represents *true* value and F represents *false* value.

Interpretation – Cont...

- The quantifiers (∀x) and (∃x) are interpreted as follows:
 - $(\forall x)$ will be interpreted as "for all elements x such that $x \in D$ "
 - $(\exists x)$ as "there exist x such that $x \in D$ ".
- We use notation $I[\alpha]$ to represents that α is evaluated under interpretation I over a domain D.
 - $I[\alpha]$ under interpretation I over a domain D cab be evaluated to be true or false.

Interpretation – Cont...

- Let α and β are formulae and I is an interpretation over any domain D. The following holds true.
 - $I[\alpha \Lambda \beta] = I[\alpha] \Lambda I[\beta]$

$$- I[\alpha \lor \beta] = I[\alpha] \lor I[\beta]$$

$$- \ \mathsf{I}[\alpha \to \beta] = \qquad \mathsf{I}[\alpha] \to \mathsf{I}[\beta]$$

$$I[\sim \alpha] = - I[\alpha]$$

- For any interpretation I and a formula using $(\forall x) \& (\exists x)$, the following results holds true.
 - $I[(\forall x)P(x)] = T \quad \text{iff } I[P(x)] = T, \ \forall x \in D$
 - = F, otherwise
 - $I[(\exists x) P(x)] = T \quad iff \exists c \in D \text{ such that } I[P(c)] = T$
 - = F, otherwise

Example - Interpretation

Let α : $(\forall x)$ ($\exists y$) P(x, y) be a formula. Evaluate α under the following interpretation I.

Example - Cont...

Solution: Consider the following cases: - If x = 1, then $\exists 2 \in D$ such that I[P(1, 2)] = T- If x = 2, then $\exists 1 \in D$ such that I[P(2, 1)] = T

Therefore, I[α] = I[(∀x) (∃ y) P(x, y)] = T i.e., α is true under above interpretation.

Exercise

• Consider a formula α : $(\forall x)$ (P(x) \rightarrow Q(f(x),c)) and the following interpretation

$$D = \{1, 2\}; \ c = 1; \ f(1) = 2, f(2) = 1$$
$$I[P(1)] = F, I[P(2)] = T$$
$$I[Q(1, 1)] = T, I[Q(1, 2)] = T,$$
$$I[Q(2, 1)] = F, \ I[Q(2, 2)] = T$$

Find the truth value of α : ($\forall x$) (P(x) \rightarrow Q(f(x), c)) under I - (Ans: true)

Definitions

- A formula α is said to be **consistent** (satisfiable)
 - if and only if there exists an interpretation I such that $I[\alpha] = T$.
 - Alternatively, we say that I is a *model* of α or I satisfies α .
- A formula α is said to be inconsistent (unsatisfiable) if and only if
 - \exists no interpretation that satisfies α or there exists no model for α .
 - A formula α is valid if and only if for every interpretation I, I[α] = T.
- A formula α is a logical consequence of a set of formulae { α 1, α 2, ..., α n } if and only if

- for every interpretation I, if $I[\alpha_1 \land ... \land \alpha_n] = T$, then $I[\alpha] = T$.

Inference Rules in Predicate Logic

Modus Ponen Rule:

Lemma 1: If α : $(\forall x)$ ($P(x) \rightarrow Q(x)$) and β : P(c) are two formulae, then Q(c) is a logical consequence of α and β where c is a constant.

Modus Tollen Rule:

Lemma 2: If $\alpha : (\forall x) (P(x) \rightarrow Q(x))$ and $\beta :$ ~ Q(c) are two formulae, then ~ P(c) is a logical consequence of α and β , where c is a constant.

Example

- Show that δ is a logical consequence of $~\alpha$ and β
- Solution: Let I be any interpretation over any domain D.
- Assume that I models α Λ β i.e., I[αΛβ] = T over D.
 - $\text{ i.e., } I[(\forall x) (P(x) \rightarrow \ \sim Q(x))] = T$ (1)
 - $\text{ and } I[(\exists x) (Q(x) \land R(x))] = T$ (2)

Cont...

From (2), there exist some constant $c \in D$ such that

$$- I[(Q(c) \land R(c))] = T$$

$$- i \Theta I[Q(c)] = T$$

$$(3)$$

$$(4)$$

$$- and I[R(c)] = T$$
 (5)

From (4),

$$- I[~Q(c)] = F$$
 (6)

From (1),

$$\begin{array}{rcl} \mathsf{I}[\mathsf{P}(c) \rightarrow & \sim \mathsf{Q}(c)] &= & \mathsf{T} \ , \\ & & \mathsf{where} \ c \ is \ the \ same \ constant \end{array}$$

$$- I[P(c)] \rightarrow I[~Q(c)] = I$$
 (7)
From (6) and (7), we get

$$- I[P(c)] = F$$

$$- I[~P(c)] = T$$
 (8)

Cont...

From (5) and (8), we get

- $I[R(c)] \Lambda I[\sim P(c)] = T i.e.,$
- $I[R(c) \Lambda \sim P(c)] = T$
- According to the definition of interpretation, we get
 - $I[(\exists x)(R(x) \Lambda \sim P(x))] = T i.e.,$
 - $-I[\delta] = T$

Hence,

- δ is a logical consequence of α and $\beta.$
- This is a direct proof, often difficult.

Semantic Tableaux (Pred Logic)

- There are four more rules handling variables in a predicate formula in addition to one given for Propositional logic.
- Let us denote a formula containing a variable x by α[x].

Rule 10: $(\forall x) \alpha [x]$ $\alpha [t]$

for any ground term t, where t is a term free from variables.

Rules – Cont...

Rule 11: $\sim \{(\forall x) \ \alpha \ [x]\} \}$
 $\sim \alpha \ [c]$
for any new constant c not occurring in α Rule 12: $(\exists x) \ \alpha \ [x]$
 $\alpha \ [c]$
for any new constant cRule 13: $\sim \{(\exists x) \ \alpha \ [x]\} \}$
 $\sim \alpha \ [t]$
for any ground term t

Few Definitions

- A path in a tableaux is *contradictory* or *closed* if some atomic formulae α and $\sim \alpha$ appear on the same path.
- If all the paths of a tableau are closed, then it is called a contradictory tableaux.
- A *tableau proof* of a formula α is a contradictory tableau with root as ~ α .
- Let α be any formula. If tableaux with α as a root is a contradictory tableaux, then α is said to be *inconsistent* otherwise α is said to be *consistent*.
- A formula α is said to be *tableau provable* (denoted by |- α) if a tableau constructed with ~ α as root is a contradictory tableau.

Example

Show that the formula

 $(\forall x) (P(x) \Lambda \sim (Q(x) \rightarrow P(x)))$ is inconsistent.

Solution:

- We have to show that
 - tableau for $[(\forall x) (P(x) \land \sim (Q(x) \rightarrow P(x)))]$ as a root is a contradictory tableau. Then by definition we can infer that the formula is inconsistent.

Example – Cont...

{Apply R1 on 2}

{Apply R7 on 3}

{Tableau root} $(\forall x) (P(x) \land \sim (Q(x) \rightarrow P(x)))$ (1) {Apply R10 on 1} | P(t) $\Lambda \sim (Q(t) \rightarrow P(t))$ (2)where t is any ground term P(t) \sim (Q(t) \rightarrow P(t)) (3)Q(t) ~ P(t) **Closed** {P(t), ~ P(t)}

Soundness and completeness

Theorem: (Soundness and completeness) :

A formula α is valid ($|= \alpha$) iff α is tableau provable ($|-\alpha$).

Example: Show a validity of the following formula using tableaux method.

 $(\forall x) \ \mathsf{P}(x) \rightarrow (\exists x) \ \mathsf{P}(x)$

Solution: If we show that

~ $[(\forall x) P(x) \rightarrow (\exists x) P(x)]$ has a contradictory tableau then α is tableau provable and hence by above theorem $(\forall x) P(x) \rightarrow (\exists x) P(x)$ is valid.

More Definitions

- A set of formulae { $\alpha_1, \alpha_2, ..., \alpha_n$ } is said to be *inconsistent* if a tableau with root as ($\alpha_1 \ \Lambda \ \alpha_2 \ \Lambda \ ..., \Lambda \ \alpha_n$) is a contradictory tableau.
- Proof of a formula α from the set Σ ={α₁, α₂,, α_n) is a contradictory tableau with root as (α₁ Λ α₂ Λ Λ α_n Λ ~ α).
 - Alternatively, we say that α is *tableau provable* from Σ and denoted by $\Sigma \mid -\alpha$.
- A formula α is a *logical consequence* of \sum iff α is *tableau provable* from \sum and is denoted by $\sum |-\alpha|$.

Exercises

- I. Translate the following English sentences into Predicate Logic
 - Everyone is loyal to someone.
 - All Romans were either loyal to Caesar or hated him.
 - For every number, there is one and only one immediate successor.
 - There is no number for which 0 is immediate successor.
- II. Evaluate truth values of the following formulae under the interpretation I (define your own interpretations).
 - $(\exists x) (P(f(x)) \land Q(x, f(c)))$
 - $(\exists x)$ (P(x) \land Q(x, c))
 - $\hspace{0.1in} (\exists x) \hspace{0.1in} (\hspace{0.1in} \mathsf{P}(x) \rightarrow \hspace{0.1in} \mathsf{Q}(x, \hspace{0.1in} c) \hspace{0.1in})$
 - $(\forall x) (\exists y) (P(x) \land Q(x, y))$
 - $\quad (\forall x) \ (\exists y) \ (\ \mathsf{P}(x) \ \rightarrow \ \mathsf{Q}(\ f \ (c), \ y) \)$
- III. Transform the following formulae into PNF and then into Skolem Standard Form.
 - $\quad (\forall x) \ (\ \exists y) \ (Q(x, \ y) \ \rightarrow P(x))$
 - $\quad (\forall x \)(\ (\exists y) \ \mathsf{P}(x, \ y) \rightarrow \ \sim \ (\ (\exists z) \ \mathsf{Q}(z) \ \ \Lambda \ \mathsf{R}(x)) \)$
 - $(\forall x)(\exists y) P(x, y) \rightarrow ((\exists y) P(x, y))$
 - $(\forall x)((\exists y) P(x, y) \Lambda ((\exists z) Q(z) \Lambda R(x)))$
 - $\quad (\forall x \)(\mathsf{P}(x) \rightarrow \ \mathsf{Q}(x)) \rightarrow \ (\ (\exists x) \ \mathsf{P}(x) \rightarrow \ (\exists x)\mathsf{Q}(x))$