
SML A Functional LanguageSML – A Functional Language

Lecture 19

Introduction to SMLIntroduction to SML
SML is a functional programming language and

f St d d M t Lacronym for Standard Meta Language.
SML has basic data objects as expressions, functions
and list etc.
– Function is the first class data object that may be passed as an

argument, returned as a result and stored in a variable.
SML is interactive in nature

Each data object is entered anal ed compiled and e ec ted– Each data object is entered, analyzed, compiled and executed.
– The value of the object is reported along with its type.
– SML is strongly typed language.
– Type can be determined automatically from its constituents by– Type can be determined automatically from its constituents by

the interpreter for data object if not specified.
– It is statically scoped language where the scope of a variable

is determined at compile time that helps more efficient and
modular program developmentmodular program development.

Interaction with SMLInteraction with SML

Basic form of interaction isBasic form of interaction is
– read, evaluate and display.

An expression denotes a value and is entered and p
terminated by semi colon (;).
– It is analyzed, compiled and executed by SML interpreter

andand
– the result is printed on the terminal along with its type.

In SML, the basic types are
– int (integers), real (real), char (character),
– bool (boolean) and string (sequence of character).

ConventionsConventions
The following conventions are used to distinguishThe following conventions are used to distinguish
between user input and SML system's response.
The SML editor prompts with “ - “ for an expression to
be entered by an userbe entered by an user.
It displays the output after the symbol “ > “.

- 2 + 5; user's input
> val it = 7 : int system's response
- 3 + 2.5;
> Error: operator and operand don't agree> Error: operator and operand don t agree

Cont…Cont…
The result starts with the reserved word val
It indicates that the value has been computed andp
is assigned to system defined identifier named as it.
Its type is implicitly derived by the system from
expression’s constituents.p
Each time a new expression is entered, the value of
it gets changed.

- not false;
> val it = true : bool
- ~3.45 ; {~ is unary minus }
> val it = ~3 45 : real> val it 3.45 : real
- (25 + 5) mod 2 ; {mod gives remainder}
> val it = 0 : int

Value DeclarationValue Declaration
Value can be given a name called variable.
The value of a variable can not be updated and theThe value of a variable can not be updated and the
life time of a variable is until it is redefined.
The keyword val is used to define the value of a
variablevariable.
The general form of a value declaration is:

val var = exp
I i bl b b d h l fIt causes a variable var to be bound to the value of
an expression exp .

- val x = 3 + 5 * 2 ;va 3 5 ;
> val x = 13 : int
- val y = x + 3;
> val y = 16 : int
- y + x ; without value declarationy ;
> val it = 29 : int

Bindings and EnvironmentsBindings and Environments
The name of a variable is formed by using alphanumeric
characters [a – z A – Z numerals underscore () andcharacters [a z, A Z, numerals, underscore (_) and
primes (‘)] and it must start with letter.
The collection of bindings at any particular state is called
an environment of that state.an environment of that state.
Execution of any declaration causes extension or change
in the environment.
The notation used for environment is not of SMLThe notation used for environment is not of SML
program but our own notation to explain the meaning of
SML programs.
The execution of the value declarationThe execution of the value declaration
- val x = 3 + 5 * 2 creates the following environment
env = [x |⇒ 13 : int]
E h ti t d t d i tEach execution creates updated environment.

Examplesp

- val x = 3 + 5 * 2;
> val x = 13 : int

env1 = [x |⇒ 13 : int]
- val y = x + 3;y
> val y = 16 : int

env2 = [x |⇒ 13 : int, y |⇒ 16 : int]
- y + x ;
> val it = 29 : int

env3 = [x |⇒ 13 : int , y |⇒ 16 : int, it ⇒ 29 : int]
- val x = ~1.23E~8 ;
> val x = ~1.23E8 : real

env4 = [y |⇒ 16 : int, it |⇒ 29 : int, x |⇒ –1.23*108 : real]

M ltiple BindingsMultiple Bindings
Multiple variables can be bound simultaneously usingMultiple variables can be bound simultaneously using
key word and as a separator.
– It is also called simultaneous declaration.

A val declaration for simultaneous declaration is of theA val declaration for simultaneous declaration is of the
form

val v1 = e1 and v2 = e2 and … and vn = en
SML interpreter evaluates all the expressions e1 e2 enSML interpreter evaluates all the expressions e1, e2, .. en
and then binds the variables v1, v2,… ,vn to have the
corresponding values.
Since the evaluations of expressions are doneSince the evaluations of expressions are done
independently, the order is immaterial.

Examples: Contd…
Continue with the previous environment
env4 = [y |⇒ 16 : int, it |⇒ 29 : int, x |⇒ –1.23*108 : real]

val y = 3 5 and x = y ;- val y = 3.5 and x = y ;
> val y = 3.5 : real
> val x = 16 : int

env5 = [it |⇒ 29 : int, y |⇒ 3.5 : real, x |⇒ 16 : int]

– Note that x does not get the current value of y which is 3.5 but
binds to the value 16 available from the previous environment
env4env4

– In multiple value bindings, the values on right hand sides are
evaluated first and then bound to the corresponding variable in the
left hand sides.

- val y = y + 3.0 and x = y ;
> val y = 6.5 : real
> val x = 3.5 : real

env6 = [it |⇒ 29 : int y |⇒ 6 5 : real x |⇒ 3 5 : real]env6 [it |⇒ 29 : int, y |⇒ 6.5 : real, x |⇒ 3.5 : real]

Compound DeclarationsCompound Declarations
Two or more declarations can be combined and separatedTwo or more declarations can be combined and separated
by semicolon.
The general form of compound declaration is

D1; D2 ; ; DnD1; D2 ; …; Dn
SML first evaluates the first declaration D1, produces an
environment, then evaluates the second declaration D2 ,
updates the previous environment and proceeds further inupdates the previous environment and proceeds further in
the sequence.
It must be noted that the subsequent declarations in
sequential composition may override the identifierssequential composition may override the identifiers
declared in the left hand side declarations.

E amplesExamples
Consider pre io s en ironment asConsider previous environment as

env6 = [it |⇒ 29 : int y |⇒ 6 5 : real x |⇒ 3 5 : real]env6 = [it |⇒ 29 : int, y |⇒ 6.5 : real, x |⇒ 3.5 : real]
- val x = 34; val x = true and z = x ; val z = x;
> val x = 34 : int

env7 = [it |⇒ 29 : int, y |⇒ 6.5 : real, x |⇒ 34 : int]
> val x = true : bool> val x = true : bool
> val z = 34 : int

env8 = [it |⇒ 29 : int, y |⇒ 6.5: real, x |⇒ true: bool, z |⇒ 34 : int]
> val z = true : bool

env9 = [it |⇒ 29:int y |⇒6 5: real x |⇒ true: bool z |⇒ true: bool]env9 = [it |⇒ 29:int, y |⇒6.5: real, x |⇒ true: bool, z |⇒ true: bool]

Expressions and Precedence p
Expressions in SML are evaluated according to operator
precedenceprecedence.
– The higher precedence means earlier evaluation.
– Equal precedence operators are evaluated from left to right.

Operators are of two kinds viz., infix operator and unary
operator.
– Infix operator is placed between two operands and is also called nfix ope ato s p aced betwee two ope a ds a d s a so ca ed

dyadic operator.
– An unary operator is always written in front of an operand and has

higher precedence than any infix operator.g p y p
– It is also called monadic operator.

In SML, infix minus is represented by - whereas unary
i t d bminus represented by ~.

Conditional E pressionsConditional Expressions
The general form of conditional expressionThe general form of conditional expression

if E then E1 else E2
Th t f i E1 d E2 h ld b th– The type of expressions E1 and E2 should be the same
whereas the type of E is bool.

– If E is true then E1 is the value of the conditional
i th i E2expression otherwise E2.

The condition is formed using arithmetic, relational,
boolean and string operators.g p

Priority of operators is: arithmetic operators,
relational operators followed by boolean / logical
operatorsoperators.

Arithmetic OperatorsArithmetic Operators
Integers: + - * div mod abs ~ (unary minus)Integers: +, , , div, mod, abs, (unary minus)
Real : +, -, *, /, sqrt, floor, sin, cos etc.

Arithmetic operators +, -, and * are defined for both p , ,
integers and reals & overloaded.
The operators are overloaded if defined for more than
one type of data typesone type of data types.
SML can deduce the type in most of the expressions,
functions from the type of the constituents used.yp

Relational & Boolean operatorsRelational & Boolean operators
Precedence is in

Integers & reals:
< (less than),
<= (less or equal to)

Precedence is in
decreasing order of not,
andalso and orelse

1. not (Logical<= (less or equal to),
> (greater than),
>= (greater or equal to)

(g
negation),

2. andalso (Logical AND),
3. orelse (Logical OR)

For all except reals
= (equal to),
<> (not equal to)

The boolean operators
andalso and orelse are
evaluated using lazy
evaluation strategy which
means that evaluate
whenever it is required.

Boolean Operators – ContBoolean Operators Cont…

andalso: true only when both operands are true.y p
orelse: false only when both operands are false.

- val x = true andalso false;
> val x = false : bool
- val y = x orelse true;val y x orelse true;
> val y = true : bool
- val z = not true;
> al false : bool> val z = false : bool

Cont…Cont…

- val p = x orelse not(y);val p x orelse not(y);
> val p = false : bool
- val n = 5;
> val n = 5 : int> val n = 5 : int
- val t = if n+3 > 0 orelse p then 9 else 6;
> val t = 9 : int
- val t = if p orelse not false then n else 3;
> val t = 5 : int

Function DeclarationFunction Declaration

Functions are also values in SML and are defined inFunctions are also values in SML and are defined in
the same way as in mathematics.
A function declaration is a form of value declaration
and so SML prints as the value and its type.
The general form of function definition is:

fun fun name (argument list) = expressionfun fun_name (argument_list) = expression
The keyword "fun" indicates that function is defined.
fun name is user defined variable andfun_name is user defined variable and
argument_list consists of arguments separated by
comma.

Function ContFunction – Cont…

Let us write a function for calculating circumferenceLet us write a function for calculating circumference
of a circle with radius r.

- val pi = 3.1414;
> pi = 3.1414 : real
- fun circum (r) = 2 0 * pi * r;fun circum (r) 2.0 pi r;
> val circum = fn : real → real
- circum (3.0);
> l it 18 8484 l

– Here "circum" is a function name

> val it = 18.8484 : real

Here circum is a function name.

Cont…
SML can infer the type of an argument from an
expression (2.0 * pi * r).p (p)
Variables appearing in the argument list are said to
be bound variables.
– In the function "circum" pi is a free identifier whereas r is– In the function circum , pi is a free identifier whereas r is

bound.

If there is one argument of a function, then circular
brackets can be remo edbrackets can be removed.
The same function can be written as:

f i 2 0 * i *- fun circum r = 2.0 * pi * r;
> val circum = fn : real → real
- circum 1.5;
> val it = 9 4242 : real> val it 9.4242 : real

Static Binding of FunctionStatic Binding of Function

- val pi = 1.0;
> val pi = 1.0 : real
- circum 1.5;

l it 9 4242 l

Note that the value of circum 1.5 is still 9.4242 even

> val it = 9.4242 : real

though pi is bound to new value to 1.0.
SML uses the environment valid at the time of
declaration of function rather than the one available
t th ti f f ti li tiat the time of function application.

This is called the static binding of free variables in
the function.

Polymorphic Function DeclarationsPolymorphic Function Declarations

Sometimes type of the function is not deducibleSometimes type of the function is not deducible
seeing the arguments or the body of the function.
These arguments can be of any type and called
polytype.polytype.
The actual type would be decided at the time of
applying function.
Function using polytype is called polymorphicFunction using polytype is called polymorphic
function.

- fun pair_self x = (x, x) ;
> val pair self = fn : ‘a → ‘a * ‘a

– Here ‘a denotes polytype.

> val pair_self fn : a → a a

Examplesp

l i lf 25- val p = pair_self 25;
> val p = (25, 25) : int * int
- val p2 = pair_self true;
> val p2 = (true true): bool*bool> val p2 = (true, true): bool*bool
- fun first_of_pair (x, y) = x ;
> val first_of_pair = fn : ‘a * ‘b → ‘a
- val f = first of pair (23, 4.5);_ _p (,);
> val f = 23 : int
- fun second_of_pair (x, y) = y ;
> val second_of_pair = fn : ‘a * ‘b → ‘b

l f d f i (23)- val f = second_of_pair (23, true);
> val f = true: bool

PatternsPatterns

A pattern is an expression consisting of variables,
d ild dconstructors and wildcards.

The constructors comprise of constants (integer,
character, bool and string), tuples, record formation,
d t t t t (l i d l t) tdatatype constructors (explained later) etc.
The simplest form of pattern matching is

pattern = exp, where exp is an expression.
When pattern = exp is evaluated, it gives true or false
value depending upon whether pattern matches with an
expression or not.

- true = (2 < 3);
> val it = true : bool
- 23 = 10 + 14;

i f> val it = false : bool

Contd…

- "abcdefg" = "abc" ^ "defg";
l it t b l> val it = true : bool

- #”a” = # “c”;
> val it = false : bool

(23 true) = (10+13 2< 3);- (23, true) = (10+13, 2< 3);
> val it = true : bool
- val v = 3;
> val v = 3 : int
- v = 2 + 1;
> val it = true : bool

Contd…Contd…
In SML, the pattern matching occurs in several contexts.
Pattern in value declaration has the form

val pat = exp
If pattern is a simple variable, then it is same as value
declaration.
If patterns are Pairs, tuples, record structure, then they
may be decomposed into their constituent parts using
pattern matching.
The result of matching changes the environment.
Reduction to atomic value bindings is achieved where an
atomic bindings is one whose pattern is a variable pattern. g p p
The binding val (pat1, pat2) = (val1, val2) reduces to
> val pat1 = val1
> val pat2 = val2> val pat2 = val2

ContdContd…
This decomposition is repeated until all bindings are atomic.p p g

- val ((p1, p2), (p3, p4 , p5)) = ((1,2), (3.4, “testing”,true));
> val p1 = 1 : int
> val p2 = 2 : int> val p2 = 2 : int
> val p3 = 3.4 : real
> val p4 = “testing” : string
> val p5 = true : bool
- val (p1 p2 p4) =(12 3 4 true 67);- val (p1, p2, _ , p4) (12, 3.4, true, 67);

> val p1 = 12 : int
> val p2 = 3.4 : real wildcard
> val p4 = 67 : int

The wildcard pattern can match to any data object. Represented by
underscore (_) and has no name thus returns an empty environment.

> val p4 67 : int

Alternati e PatternAlternative Pattern
Functions can be defined using alternative patterns asFunctions can be defined using alternative patterns as
follows:

fun pat1 = exp1 | pat2 = exp2 | … | patn = expn ;
Each pattern patk consists of same function name followed
by arguments.
The patterns are matched from top to bottom until the matchThe patterns are matched from top to bottom until the match
is found.
The corresponding expression is evaluated and the value is
returnedreturned.

- fun fact 1 = 1
| fact n = n * fact (n-1);

> val fact = fn : int > int> val fact = fn : int -> int

ContdContd…

> val fact = fn : int -> int
- fact 3;
> val it = 6 : int> val it = 6 : int
- fun negation true = false

| negation false = true;
> val negation = fn : bool > bool> val negation = fn : bool -> bool
- negation (2 > 3);
> val it = true : bool

F i i Al iFunction using Alternative
Functions can be defined using alternative asFunctions can be defined using alternative as
follows:

fun fun def1 = exp1fun fun_def1 = exp1
| fun_def2 = exp2

| …| …

| fun_defn = expn ;

– Each definition is matched from top to bottom until the
match is found.

– The corresponding expression is evaluated and the value is
returnedreturned.

ExamplesExamples

- fun fact 1 = 1
| fact n = n * fact (n-1);

> val fact = fn : int -> int
- fact 3;
> val it = 6 : intv 6
- fun negation true = false

| negation false = true;
> val negation = fn : bool > bool> val negation = fn : bool -> bool
- negation (2 > 3);
> val it = true : bool

Case ExpressionCase Expression

C diti l i t k f l tConditional expression takes care of only two cases
whereas if we want to express more than two cases,
then the nested if-then-else expression is used.p
Alternatively we can handle such situations using
case expression.
The general form of case expression is:

case exp of pat1 => exp1
| pat2 => exp2

| patn => expn| patn expn

Pattern – Cont…Pattern Cont…
The value of exp is matched successively against the
patterns pat1 pat2 patnpatterns pat1 , pat2 , … , patn .
If patj is the first pattern matched , then the
corresponding expj is the value of the entire case
expressionexpression.
For example the nested nested if-then-else expression

if x = 0 then “zero” else if x = 1 then “one”
else if x = 2 then “two” else “none”

is equivalent to the following case expression

case x of 0 => “zero”
| 1 => “one”
| 2 => “two”

ild d | “ ”wild card | _ => “none”

Lists in SMLLists in SML

List is an ordered sequence of data objects, all ofq j ,
which are of the same type.
In SML, the list consists of finite sequence of values of
t ‘ d th ti li t i f t ‘ li ttype ‘a and the entire list is of type ‘a list.
The elements of list are enclosed in square brackets
and are separated by comma.and are separated by comma.
The empty list denoted by [] that contains no
elements.
The order of elements is significant.

List – Cont…List Cont…
List can contain varying number of elements of the
same type whereas in tuples and records the numbersame type whereas in tuples and records the number
of elements are fixed and are of any type.
The first element of the list is at 0 position.
Typical lists are:

- val x = []; empty list
> val x = [] : 'a list
- val r = [2.3, 4.5 / 1.2, 8.9 + 2.3]; list of real
> val r = [2.3,3.75,11.2] : real list
- val y = [[1,2], [3,4,5,6], []]; list of list of int type
> val y = [[1,2],[3,4,5,6],[]] : int list list
- val p = [floor, round, trunc]; list of functions
> al p [fn fn fn] : (real > int) list> val p = [fn,fn,fn] : (real -> int) list

Construction of a ListConstruction of a List
A list is constructed by two primitives: one a

t t il (t li t d t d b []) d thconstant nil (empty list denoted by []) and other an
infix operator cons represented by ::
A list is represented as head :: tail , where head isp
a first element of the list and tail is the remaining list.
The operator cons builds a tree for a list from its
head to tailhead to tail.
For example, a list [2] can be represented as 2 :: nil
The tree representation for a list head :: tail is as
follows: ::follows: ::

head tail

Cont…Cont…
A list can be constructed by adding an element in
the beginning using cons operator.g g g p

- 4::nil;
> val it = [4] : int list

val p = 3 :: [4];- val p = 3 :: [4];
> val p = [3,4] : int list
- val q = 2 :: p;
> val q = [2,3,4] : int list

The list [x1, x2, x3, …, xn] can also be written as[, , , ,]
x1 :: :: xn :: nil.

Cont…Cont…

It’ t t ti iIt’s tree representation is
::

x1 ::
x2 ::x2 ::

x3 ::

xn nil
Two lists can be compared for equality or inequality.

Standard List FunctionsStandard List Functions
There are only few standard functions for handling
li t i SMLlists in SML
List constructor operator denoted by ::

- 2 :: [3,4,5];2 :: [3,4,5];
> val it = [2,3,4,5] : int list
- true :: [2>3];
> val it = [true, false] : bool list

The Append operator denoted by @

- [1,2,3] @ [4,5];[1,2,3] @ [4,5];
> val it = [1,2,3,4,5] : int list

List FunctionsList Functions

The reversing function rev for reversing the
l t f li telements of a list:

rev [1 2 3];- rev [1,2,3];
> val it = [3,2,1] : int list
- rev [[1,2], [3,4], [5]];
> val it = [[5],[3,4], [1,2]] : int list list
- rev [(10,"abc"), (20, "bcd")];
> val it = [(20,"bcd"),(10,"abc")] : (int * string) list

List Functions – Cont…List Functions Cont…

Finding Head and Tail of a list by using hd (for head)
& tl (f t il) f ti& tl (for tail) functions:

- hd [(1,"ab"), (2, "bc")];
> val it = (1 "ab") : int * string> val it (1, ab) : int string
- tl [(1,"ab"), (2, "bc")];
> val it = [(2,"bc")] : (int * string) list

Finding the length of a list length:

- length [1,2,3,6];
> val it = 4 : int
- length [(1,"ab"), (2, "bc")];
> val it = 2 : int> val it = 2 : int

Various other list functionsVarious other list functions
Adding elements of the list

- fun add [] = 0
| add (x::xs) = x + add xs;

> val add = fn : int list -> intval add fn : int list int
- add [2,3,4,7,8];
> val it = 24 : int

Multiplying elements of the list

- fun mult [] = 0
| lt []| mult [x] = x
| mult (x::xs) = x * mult xs ;

> val multl = fn : int list -> int

Cont…
Selecting a particular position value

- fun select (n, []) = 0
| select (n, (x::xs)) = if n = 1 then x

else select ((n-1), xs);
> val select = fn : int * int list -> int

Finding the maximum value of the elements in a list

val select fn : int int list int

g

- fun max [] = 0
| max [x] = x
| max(x::y::xs) = if x > y then| max(x::y::xs) if x > y then

max(x::xs) else max(y::xs);
> val max = fn : int list -> int
- max [3,9,1,3,56,7];
> val it = 56 : int> val it 56 : int

